Loading…

Growth Kinetics of Graphene on Cu(111) Foils from Methane, Ethyne, Ethylene, and Ethane

Chemical vapor deposition of carbon precursors on Cu‐based substrates at temperatures exceeding 1000 °C is currently a typical route for the scalable synthesis of large‐area high‐quality single‐layer graphene (SLG) films. Using molecules with higher activities than CH4 may afford lower growth temper...

Full description

Saved in:
Bibliographic Details
Published in:Angewandte Chemie International Edition 2024-12, Vol.63 (51), p.e202412131-n/a
Main Authors: Wang, Meihui, Chul Kim, Yong, Meng, Yongqiang, Chatterjee, Shahana, Bakharev, Pavel, Luo, Da, Gong, Yan, Abadie, Thomas, Hyeok Kim, Min, Sitek, Jakub, Kyung Seong, Won, Lee, Geunsik, Ruoff, Rodney S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c2981-64bc87331e62b0b681bbbd333dd94bffe296d42d9b4f5202f5ad513572e3448e3
container_end_page n/a
container_issue 51
container_start_page e202412131
container_title Angewandte Chemie International Edition
container_volume 63
creator Wang, Meihui
Chul Kim, Yong
Meng, Yongqiang
Chatterjee, Shahana
Bakharev, Pavel
Luo, Da
Gong, Yan
Abadie, Thomas
Hyeok Kim, Min
Sitek, Jakub
Kyung Seong, Won
Lee, Geunsik
Ruoff, Rodney S.
description Chemical vapor deposition of carbon precursors on Cu‐based substrates at temperatures exceeding 1000 °C is currently a typical route for the scalable synthesis of large‐area high‐quality single‐layer graphene (SLG) films. Using molecules with higher activities than CH4 may afford lower growth temperatures that might yield fold‐ and wrinkle‐free graphene. The kinetics of growth of graphene using hydrocarbons other than CH4 are of interest to the scientific and industrial communities. We measured the growth rates of graphene islands on Cu(111) foils by using C2H2, C2H4, C2H6 and CH4, respectively (each mixed with H2). From such kinetics data we obtain the activation enthalpy (ΔH≠) of graphene growth as shown in parentheses (C2H2 (0.93±0.09 eV); C2H4 (2.05±0.19 eV); C2H6 (2.50±0.11 eV); CH4 (4.59±0.26 eV)); C2Hy (y=2, 4, 6) show similar growth behavior but CH4 is different. Computational fluid dynamics and density functional theory simulations suggest that C2Hy differs from CH4 due to different values of adsorption energy and the lifetime of relevant carbon precursors on the Cu(111) surface. Combining experimental and simulation results, we find that the rate determining step (RDS) is the dissociation of the first C−H bond of CH4 molecules in the gas phase, while the RDS using C2Hy is the first dehydrogenation of adsorbed C2Hy that happens with assistance of H atoms adsorbed on the Cu(111) surface. By using C2H2 as the carbon precursor, high‐quality single‐crystal adlayer‐free SLG films are achieved on Cu(111) foils at 900 °C. We obtained the activation enthalpies of graphene island growth on Cu(111) foils using H2 and: CH4, and C2H2, C2H4, and C2H6, respectively. The rate determining step (RDS) for CH4 is its gas phase decomposition to H and CH3. The RDS for C2H2, C2H4, and C2H6 is dehydrogenation on the Cu(111) surface yielding adsorbed C2H1, C2H3, and C2H5, respectively.
doi_str_mv 10.1002/anie.202412131
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3121590065</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3142257094</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2981-64bc87331e62b0b681bbbd333dd94bffe296d42d9b4f5202f5ad513572e3448e3</originalsourceid><addsrcrecordid>eNqFkE1Lw0AQhhdR_KhePcqCFwVT9zvZYyltFateFI8hm0xIJM3W3QTpv3dDq4IXTzPDPvMy-yB0TsmYEsJus7aGMSNMUEY53UPHVDIa8Tjm-6EXnEdxIukROvH-PfBJQtQhOuJaKKWVOEZvC2c_uwo_1C10de6xLfHCZesKWsC2xdP-ilJ6jee2bjwunV3hR-iqrIUbPOuqzXdtYOiythim8HqKDsqs8XC2qyP0Op-9TO-i5fPifjpZRjnTCY2UMHkSc05BMUOMSqgxpuCcF4UWpiyBaVUIVmgjShm-WcqskJTLmAEXIgE-Qlfb3LWzHz34Ll3VPoemCTfY3qc8eJGaECUDevkHfbe9a8N1gRKMyZhoEajxlsqd9d5Bma5dvcrcJqUkHZSng_L0R3lYuNjF9mYFxQ_-7TgAegt81g1s_olLJ0_3s9_wLy4Zid4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3142257094</pqid></control><display><type>article</type><title>Growth Kinetics of Graphene on Cu(111) Foils from Methane, Ethyne, Ethylene, and Ethane</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Wang, Meihui ; Chul Kim, Yong ; Meng, Yongqiang ; Chatterjee, Shahana ; Bakharev, Pavel ; Luo, Da ; Gong, Yan ; Abadie, Thomas ; Hyeok Kim, Min ; Sitek, Jakub ; Kyung Seong, Won ; Lee, Geunsik ; Ruoff, Rodney S.</creator><creatorcontrib>Wang, Meihui ; Chul Kim, Yong ; Meng, Yongqiang ; Chatterjee, Shahana ; Bakharev, Pavel ; Luo, Da ; Gong, Yan ; Abadie, Thomas ; Hyeok Kim, Min ; Sitek, Jakub ; Kyung Seong, Won ; Lee, Geunsik ; Ruoff, Rodney S.</creatorcontrib><description>Chemical vapor deposition of carbon precursors on Cu‐based substrates at temperatures exceeding 1000 °C is currently a typical route for the scalable synthesis of large‐area high‐quality single‐layer graphene (SLG) films. Using molecules with higher activities than CH4 may afford lower growth temperatures that might yield fold‐ and wrinkle‐free graphene. The kinetics of growth of graphene using hydrocarbons other than CH4 are of interest to the scientific and industrial communities. We measured the growth rates of graphene islands on Cu(111) foils by using C2H2, C2H4, C2H6 and CH4, respectively (each mixed with H2). From such kinetics data we obtain the activation enthalpy (ΔH≠) of graphene growth as shown in parentheses (C2H2 (0.93±0.09 eV); C2H4 (2.05±0.19 eV); C2H6 (2.50±0.11 eV); CH4 (4.59±0.26 eV)); C2Hy (y=2, 4, 6) show similar growth behavior but CH4 is different. Computational fluid dynamics and density functional theory simulations suggest that C2Hy differs from CH4 due to different values of adsorption energy and the lifetime of relevant carbon precursors on the Cu(111) surface. Combining experimental and simulation results, we find that the rate determining step (RDS) is the dissociation of the first C−H bond of CH4 molecules in the gas phase, while the RDS using C2Hy is the first dehydrogenation of adsorbed C2Hy that happens with assistance of H atoms adsorbed on the Cu(111) surface. By using C2H2 as the carbon precursor, high‐quality single‐crystal adlayer‐free SLG films are achieved on Cu(111) foils at 900 °C. We obtained the activation enthalpies of graphene island growth on Cu(111) foils using H2 and: CH4, and C2H2, C2H4, and C2H6, respectively. The rate determining step (RDS) for CH4 is its gas phase decomposition to H and CH3. The RDS for C2H2, C2H4, and C2H6 is dehydrogenation on the Cu(111) surface yielding adsorbed C2H1, C2H3, and C2H5, respectively.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>ISSN: 1521-3773</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.202412131</identifier><identifier>PMID: 39466964</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Carbon ; Chemical bonds ; Chemical synthesis ; Chemical vapor deposition ; Computational fluid dynamics ; Copper ; Dehydrogenation ; Density functional theory ; Enthalpy ; Ethane ; Fluid dynamics ; Graphene ; graphene folds ; Growth kinetics ; Hydrodynamics ; Hydrogen bonds ; Kinetics ; Methane ; Precursors ; Substrates ; Vapor phases</subject><ispartof>Angewandte Chemie International Edition, 2024-12, Vol.63 (51), p.e202412131-n/a</ispartof><rights>2024 Wiley-VCH GmbH</rights><rights>2024 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2981-64bc87331e62b0b681bbbd333dd94bffe296d42d9b4f5202f5ad513572e3448e3</cites><orcidid>0000-0001-5497-5709 ; 0000-0002-6599-6764</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39466964$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Meihui</creatorcontrib><creatorcontrib>Chul Kim, Yong</creatorcontrib><creatorcontrib>Meng, Yongqiang</creatorcontrib><creatorcontrib>Chatterjee, Shahana</creatorcontrib><creatorcontrib>Bakharev, Pavel</creatorcontrib><creatorcontrib>Luo, Da</creatorcontrib><creatorcontrib>Gong, Yan</creatorcontrib><creatorcontrib>Abadie, Thomas</creatorcontrib><creatorcontrib>Hyeok Kim, Min</creatorcontrib><creatorcontrib>Sitek, Jakub</creatorcontrib><creatorcontrib>Kyung Seong, Won</creatorcontrib><creatorcontrib>Lee, Geunsik</creatorcontrib><creatorcontrib>Ruoff, Rodney S.</creatorcontrib><title>Growth Kinetics of Graphene on Cu(111) Foils from Methane, Ethyne, Ethylene, and Ethane</title><title>Angewandte Chemie International Edition</title><addtitle>Angew Chem Int Ed Engl</addtitle><description>Chemical vapor deposition of carbon precursors on Cu‐based substrates at temperatures exceeding 1000 °C is currently a typical route for the scalable synthesis of large‐area high‐quality single‐layer graphene (SLG) films. Using molecules with higher activities than CH4 may afford lower growth temperatures that might yield fold‐ and wrinkle‐free graphene. The kinetics of growth of graphene using hydrocarbons other than CH4 are of interest to the scientific and industrial communities. We measured the growth rates of graphene islands on Cu(111) foils by using C2H2, C2H4, C2H6 and CH4, respectively (each mixed with H2). From such kinetics data we obtain the activation enthalpy (ΔH≠) of graphene growth as shown in parentheses (C2H2 (0.93±0.09 eV); C2H4 (2.05±0.19 eV); C2H6 (2.50±0.11 eV); CH4 (4.59±0.26 eV)); C2Hy (y=2, 4, 6) show similar growth behavior but CH4 is different. Computational fluid dynamics and density functional theory simulations suggest that C2Hy differs from CH4 due to different values of adsorption energy and the lifetime of relevant carbon precursors on the Cu(111) surface. Combining experimental and simulation results, we find that the rate determining step (RDS) is the dissociation of the first C−H bond of CH4 molecules in the gas phase, while the RDS using C2Hy is the first dehydrogenation of adsorbed C2Hy that happens with assistance of H atoms adsorbed on the Cu(111) surface. By using C2H2 as the carbon precursor, high‐quality single‐crystal adlayer‐free SLG films are achieved on Cu(111) foils at 900 °C. We obtained the activation enthalpies of graphene island growth on Cu(111) foils using H2 and: CH4, and C2H2, C2H4, and C2H6, respectively. The rate determining step (RDS) for CH4 is its gas phase decomposition to H and CH3. The RDS for C2H2, C2H4, and C2H6 is dehydrogenation on the Cu(111) surface yielding adsorbed C2H1, C2H3, and C2H5, respectively.</description><subject>Carbon</subject><subject>Chemical bonds</subject><subject>Chemical synthesis</subject><subject>Chemical vapor deposition</subject><subject>Computational fluid dynamics</subject><subject>Copper</subject><subject>Dehydrogenation</subject><subject>Density functional theory</subject><subject>Enthalpy</subject><subject>Ethane</subject><subject>Fluid dynamics</subject><subject>Graphene</subject><subject>graphene folds</subject><subject>Growth kinetics</subject><subject>Hydrodynamics</subject><subject>Hydrogen bonds</subject><subject>Kinetics</subject><subject>Methane</subject><subject>Precursors</subject><subject>Substrates</subject><subject>Vapor phases</subject><issn>1433-7851</issn><issn>1521-3773</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkE1Lw0AQhhdR_KhePcqCFwVT9zvZYyltFateFI8hm0xIJM3W3QTpv3dDq4IXTzPDPvMy-yB0TsmYEsJus7aGMSNMUEY53UPHVDIa8Tjm-6EXnEdxIukROvH-PfBJQtQhOuJaKKWVOEZvC2c_uwo_1C10de6xLfHCZesKWsC2xdP-ilJ6jee2bjwunV3hR-iqrIUbPOuqzXdtYOiythim8HqKDsqs8XC2qyP0Op-9TO-i5fPifjpZRjnTCY2UMHkSc05BMUOMSqgxpuCcF4UWpiyBaVUIVmgjShm-WcqskJTLmAEXIgE-Qlfb3LWzHz34Ll3VPoemCTfY3qc8eJGaECUDevkHfbe9a8N1gRKMyZhoEajxlsqd9d5Bma5dvcrcJqUkHZSng_L0R3lYuNjF9mYFxQ_-7TgAegt81g1s_olLJ0_3s9_wLy4Zid4</recordid><startdate>20241216</startdate><enddate>20241216</enddate><creator>Wang, Meihui</creator><creator>Chul Kim, Yong</creator><creator>Meng, Yongqiang</creator><creator>Chatterjee, Shahana</creator><creator>Bakharev, Pavel</creator><creator>Luo, Da</creator><creator>Gong, Yan</creator><creator>Abadie, Thomas</creator><creator>Hyeok Kim, Min</creator><creator>Sitek, Jakub</creator><creator>Kyung Seong, Won</creator><creator>Lee, Geunsik</creator><creator>Ruoff, Rodney S.</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5497-5709</orcidid><orcidid>https://orcid.org/0000-0002-6599-6764</orcidid></search><sort><creationdate>20241216</creationdate><title>Growth Kinetics of Graphene on Cu(111) Foils from Methane, Ethyne, Ethylene, and Ethane</title><author>Wang, Meihui ; Chul Kim, Yong ; Meng, Yongqiang ; Chatterjee, Shahana ; Bakharev, Pavel ; Luo, Da ; Gong, Yan ; Abadie, Thomas ; Hyeok Kim, Min ; Sitek, Jakub ; Kyung Seong, Won ; Lee, Geunsik ; Ruoff, Rodney S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2981-64bc87331e62b0b681bbbd333dd94bffe296d42d9b4f5202f5ad513572e3448e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Carbon</topic><topic>Chemical bonds</topic><topic>Chemical synthesis</topic><topic>Chemical vapor deposition</topic><topic>Computational fluid dynamics</topic><topic>Copper</topic><topic>Dehydrogenation</topic><topic>Density functional theory</topic><topic>Enthalpy</topic><topic>Ethane</topic><topic>Fluid dynamics</topic><topic>Graphene</topic><topic>graphene folds</topic><topic>Growth kinetics</topic><topic>Hydrodynamics</topic><topic>Hydrogen bonds</topic><topic>Kinetics</topic><topic>Methane</topic><topic>Precursors</topic><topic>Substrates</topic><topic>Vapor phases</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Meihui</creatorcontrib><creatorcontrib>Chul Kim, Yong</creatorcontrib><creatorcontrib>Meng, Yongqiang</creatorcontrib><creatorcontrib>Chatterjee, Shahana</creatorcontrib><creatorcontrib>Bakharev, Pavel</creatorcontrib><creatorcontrib>Luo, Da</creatorcontrib><creatorcontrib>Gong, Yan</creatorcontrib><creatorcontrib>Abadie, Thomas</creatorcontrib><creatorcontrib>Hyeok Kim, Min</creatorcontrib><creatorcontrib>Sitek, Jakub</creatorcontrib><creatorcontrib>Kyung Seong, Won</creatorcontrib><creatorcontrib>Lee, Geunsik</creatorcontrib><creatorcontrib>Ruoff, Rodney S.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Meihui</au><au>Chul Kim, Yong</au><au>Meng, Yongqiang</au><au>Chatterjee, Shahana</au><au>Bakharev, Pavel</au><au>Luo, Da</au><au>Gong, Yan</au><au>Abadie, Thomas</au><au>Hyeok Kim, Min</au><au>Sitek, Jakub</au><au>Kyung Seong, Won</au><au>Lee, Geunsik</au><au>Ruoff, Rodney S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Growth Kinetics of Graphene on Cu(111) Foils from Methane, Ethyne, Ethylene, and Ethane</atitle><jtitle>Angewandte Chemie International Edition</jtitle><addtitle>Angew Chem Int Ed Engl</addtitle><date>2024-12-16</date><risdate>2024</risdate><volume>63</volume><issue>51</issue><spage>e202412131</spage><epage>n/a</epage><pages>e202412131-n/a</pages><issn>1433-7851</issn><issn>1521-3773</issn><eissn>1521-3773</eissn><abstract>Chemical vapor deposition of carbon precursors on Cu‐based substrates at temperatures exceeding 1000 °C is currently a typical route for the scalable synthesis of large‐area high‐quality single‐layer graphene (SLG) films. Using molecules with higher activities than CH4 may afford lower growth temperatures that might yield fold‐ and wrinkle‐free graphene. The kinetics of growth of graphene using hydrocarbons other than CH4 are of interest to the scientific and industrial communities. We measured the growth rates of graphene islands on Cu(111) foils by using C2H2, C2H4, C2H6 and CH4, respectively (each mixed with H2). From such kinetics data we obtain the activation enthalpy (ΔH≠) of graphene growth as shown in parentheses (C2H2 (0.93±0.09 eV); C2H4 (2.05±0.19 eV); C2H6 (2.50±0.11 eV); CH4 (4.59±0.26 eV)); C2Hy (y=2, 4, 6) show similar growth behavior but CH4 is different. Computational fluid dynamics and density functional theory simulations suggest that C2Hy differs from CH4 due to different values of adsorption energy and the lifetime of relevant carbon precursors on the Cu(111) surface. Combining experimental and simulation results, we find that the rate determining step (RDS) is the dissociation of the first C−H bond of CH4 molecules in the gas phase, while the RDS using C2Hy is the first dehydrogenation of adsorbed C2Hy that happens with assistance of H atoms adsorbed on the Cu(111) surface. By using C2H2 as the carbon precursor, high‐quality single‐crystal adlayer‐free SLG films are achieved on Cu(111) foils at 900 °C. We obtained the activation enthalpies of graphene island growth on Cu(111) foils using H2 and: CH4, and C2H2, C2H4, and C2H6, respectively. The rate determining step (RDS) for CH4 is its gas phase decomposition to H and CH3. The RDS for C2H2, C2H4, and C2H6 is dehydrogenation on the Cu(111) surface yielding adsorbed C2H1, C2H3, and C2H5, respectively.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>39466964</pmid><doi>10.1002/anie.202412131</doi><tpages>8</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0001-5497-5709</orcidid><orcidid>https://orcid.org/0000-0002-6599-6764</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1433-7851
ispartof Angewandte Chemie International Edition, 2024-12, Vol.63 (51), p.e202412131-n/a
issn 1433-7851
1521-3773
1521-3773
language eng
recordid cdi_proquest_miscellaneous_3121590065
source Wiley-Blackwell Read & Publish Collection
subjects Carbon
Chemical bonds
Chemical synthesis
Chemical vapor deposition
Computational fluid dynamics
Copper
Dehydrogenation
Density functional theory
Enthalpy
Ethane
Fluid dynamics
Graphene
graphene folds
Growth kinetics
Hydrodynamics
Hydrogen bonds
Kinetics
Methane
Precursors
Substrates
Vapor phases
title Growth Kinetics of Graphene on Cu(111) Foils from Methane, Ethyne, Ethylene, and Ethane
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T05%3A08%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Growth%20Kinetics%20of%20Graphene%20on%20Cu(111)%20Foils%20from%20Methane,%20Ethyne,%20Ethylene,%20and%20Ethane&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Wang,%20Meihui&rft.date=2024-12-16&rft.volume=63&rft.issue=51&rft.spage=e202412131&rft.epage=n/a&rft.pages=e202412131-n/a&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.202412131&rft_dat=%3Cproquest_cross%3E3142257094%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2981-64bc87331e62b0b681bbbd333dd94bffe296d42d9b4f5202f5ad513572e3448e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3142257094&rft_id=info:pmid/39466964&rfr_iscdi=true