Loading…
Beyond Conventional Drug Design: Exploring the Broad-Spectrum Efficacy of Antimicrobial Peptides
In the fight against pathogenic infections, antimicrobial peptides (AMPs) constitute a novel and promising class of compounds that defies accepted drug development conventions like Lipinski's rule. AMPs are remarkably effective against a variety of pathogens, including viruses, bacteria, parasi...
Saved in:
Published in: | Chemistry & biodiversity 2024-12, p.e202401349 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In the fight against pathogenic infections, antimicrobial peptides (AMPs) constitute a novel and promising class of compounds that defies accepted drug development conventions like Lipinski's rule. AMPs are remarkably effective against a variety of pathogens, including viruses, bacteria, parasites, and fungi. Their effectiveness, despite differing from traditional drug-like properties defies accepted standards. This review investigates the complex world of AMPs with an emphasis on their structural and physicochemical properties, which include size, sequence, structure, charge, and half-life. These distinguishing characteristics set AMPs apart from conventional therapeutics that adhere to Lipinski's rules and greatly contribute to their selective targeting, reduction of resistance, multifunctionality, and broad-spectrum efficacy. In contrast to traditional drugs that follow Lipinski's guidelines, AMPs have special qualities that play a big role in their ability to target specific targets, lower resistance, and work across a wide range of conditions. Our work is unique because of this nuanced investigation, which offers a new viewpoint on the potential of AMPs in tackling the worldwide problem of antibiotic resistance. In the face of the escalating global challenge of antibiotic resistance, antimicrobial peptides (AMPs) are innovative antimicrobial agents with unique mechanisms of action that challenge traditional Lipinski's Rule. They can withstand various microbial threats through membrane disruption, intracellular targeting, and immunomodulation. AMP versatility sets them apart from other antibiotics and their potential to address microbial infections and antibiotic resistance is growing. To fully unlock their potential, traditional drug development approaches need to be reconsidered. AMPs have revolutionary potential, paving the way for innovative solutions to health issues and transforming the antimicrobial therapy landscape. |
---|---|
ISSN: | 1612-1872 1612-1880 1612-1880 |
DOI: | 10.1002/cbdv.202401349 |