Loading…

Basolateral Mechanics Prevents Rigidity Transition in Epithelial Monolayers

The mechanics of epithelial tissues, which is governed by forces generated in various cell regions, is often investigated using two-dimensional models that account for the apically positioned actomyosin structures but neglect basolateral mechanics. We employ a more detailed three-dimensional model t...

Full description

Saved in:
Bibliographic Details
Published in:Physical review letters 2024-10, Vol.133 (16), p.168401, Article 168401
Main Authors: Rozman, Jan, Krajnc, Matej, Ziherl, Primož
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The mechanics of epithelial tissues, which is governed by forces generated in various cell regions, is often investigated using two-dimensional models that account for the apically positioned actomyosin structures but neglect basolateral mechanics. We employ a more detailed three-dimensional model to study how lateral surface tensions affect the structure and rigidity of such tissues. We find that cells are apicobasally asymmetric, with one side appearing more ordered than the other depending on target cell apical perimeter. In contrast to the 2D model, which predicts a rigidity transition at large target perimeters, tissues in the 3D model remain solidlike across all parameter space.
ISSN:0031-9007
1079-7114
1079-7114
DOI:10.1103/PhysRevLett.133.168401