Loading…
Basolateral Mechanics Prevents Rigidity Transition in Epithelial Monolayers
The mechanics of epithelial tissues, which is governed by forces generated in various cell regions, is often investigated using two-dimensional models that account for the apically positioned actomyosin structures but neglect basolateral mechanics. We employ a more detailed three-dimensional model t...
Saved in:
Published in: | Physical review letters 2024-10, Vol.133 (16), p.168401, Article 168401 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c188t-48692d1dbfe017de1c0e6ae86cebc4020006a679b1777e502e5b94b883790fd93 |
container_end_page | |
container_issue | 16 |
container_start_page | 168401 |
container_title | Physical review letters |
container_volume | 133 |
creator | Rozman, Jan Krajnc, Matej Ziherl, Primož |
description | The mechanics of epithelial tissues, which is governed by forces generated in various cell regions, is often investigated using two-dimensional models that account for the apically positioned actomyosin structures but neglect basolateral mechanics. We employ a more detailed three-dimensional model to study how lateral surface tensions affect the structure and rigidity of such tissues. We find that cells are apicobasally asymmetric, with one side appearing more ordered than the other depending on target cell apical perimeter. In contrast to the 2D model, which predicts a rigidity transition at large target perimeters, tissues in the 3D model remain solidlike across all parameter space. |
doi_str_mv | 10.1103/PhysRevLett.133.168401 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3123367926</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3123367926</sourcerecordid><originalsourceid>FETCH-LOGICAL-c188t-48692d1dbfe017de1c0e6ae86cebc4020006a679b1777e502e5b94b883790fd93</originalsourceid><addsrcrecordid>eNpNkEtPwkAUhSdGI4j-BdKlm-K9nTKPpRJ8RIyE4LqZthcZU1qcGUj67y0Bjau7Oec7Nx9jQ4QRIvC7-br1C9rPKIQRcj5CoVLAM9ZHkDqWiOk56wNwjDWA7LEr778AABOhLlmP61SN9Zj32euD8U1lAjlTRW9UrE1tCx_NHe2pDj5a2E9b2tBGS2dqb4Nt6sjW0XRrw5oqeyg1dQdoyflrdrEylaeb0x2wj8fpcvIcz96fXib3s7hApUKcKqGTEst8RYCyJCyAhCElCsqLFJLuTWGE1DlKKWkMCY1zneZKcalhVWo-YLdH7tY13zvyIdtYX1BVmZqanc84Jpx3gER0UXGMFq7x3tEq2zq7Ma7NELKDyOyfyKwTmR1FdsXhaWOXb6j8q_2a4z_-I3J7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3123367926</pqid></control><display><type>article</type><title>Basolateral Mechanics Prevents Rigidity Transition in Epithelial Monolayers</title><source>American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)</source><creator>Rozman, Jan ; Krajnc, Matej ; Ziherl, Primož</creator><creatorcontrib>Rozman, Jan ; Krajnc, Matej ; Ziherl, Primož</creatorcontrib><description>The mechanics of epithelial tissues, which is governed by forces generated in various cell regions, is often investigated using two-dimensional models that account for the apically positioned actomyosin structures but neglect basolateral mechanics. We employ a more detailed three-dimensional model to study how lateral surface tensions affect the structure and rigidity of such tissues. We find that cells are apicobasally asymmetric, with one side appearing more ordered than the other depending on target cell apical perimeter. In contrast to the 2D model, which predicts a rigidity transition at large target perimeters, tissues in the 3D model remain solidlike across all parameter space.</description><identifier>ISSN: 0031-9007</identifier><identifier>ISSN: 1079-7114</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.133.168401</identifier><identifier>PMID: 39485953</identifier><language>eng</language><publisher>United States</publisher><subject>Actomyosin - chemistry ; Actomyosin - metabolism ; Biomechanical Phenomena ; Cell Polarity - physiology ; Epithelial Cells - cytology ; Epithelial Cells - physiology ; Epithelium - physiology ; Models, Biological ; Surface Tension</subject><ispartof>Physical review letters, 2024-10, Vol.133 (16), p.168401, Article 168401</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c188t-48692d1dbfe017de1c0e6ae86cebc4020006a679b1777e502e5b94b883790fd93</cites><orcidid>0000-0003-3112-8114 ; 0000-0002-5989-6679 ; 0000-0002-5672-1232</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39485953$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rozman, Jan</creatorcontrib><creatorcontrib>Krajnc, Matej</creatorcontrib><creatorcontrib>Ziherl, Primož</creatorcontrib><title>Basolateral Mechanics Prevents Rigidity Transition in Epithelial Monolayers</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>The mechanics of epithelial tissues, which is governed by forces generated in various cell regions, is often investigated using two-dimensional models that account for the apically positioned actomyosin structures but neglect basolateral mechanics. We employ a more detailed three-dimensional model to study how lateral surface tensions affect the structure and rigidity of such tissues. We find that cells are apicobasally asymmetric, with one side appearing more ordered than the other depending on target cell apical perimeter. In contrast to the 2D model, which predicts a rigidity transition at large target perimeters, tissues in the 3D model remain solidlike across all parameter space.</description><subject>Actomyosin - chemistry</subject><subject>Actomyosin - metabolism</subject><subject>Biomechanical Phenomena</subject><subject>Cell Polarity - physiology</subject><subject>Epithelial Cells - cytology</subject><subject>Epithelial Cells - physiology</subject><subject>Epithelium - physiology</subject><subject>Models, Biological</subject><subject>Surface Tension</subject><issn>0031-9007</issn><issn>1079-7114</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkEtPwkAUhSdGI4j-BdKlm-K9nTKPpRJ8RIyE4LqZthcZU1qcGUj67y0Bjau7Oec7Nx9jQ4QRIvC7-br1C9rPKIQRcj5CoVLAM9ZHkDqWiOk56wNwjDWA7LEr778AABOhLlmP61SN9Zj32euD8U1lAjlTRW9UrE1tCx_NHe2pDj5a2E9b2tBGS2dqb4Nt6sjW0XRrw5oqeyg1dQdoyflrdrEylaeb0x2wj8fpcvIcz96fXib3s7hApUKcKqGTEst8RYCyJCyAhCElCsqLFJLuTWGE1DlKKWkMCY1zneZKcalhVWo-YLdH7tY13zvyIdtYX1BVmZqanc84Jpx3gER0UXGMFq7x3tEq2zq7Ma7NELKDyOyfyKwTmR1FdsXhaWOXb6j8q_2a4z_-I3J7</recordid><startdate>20241018</startdate><enddate>20241018</enddate><creator>Rozman, Jan</creator><creator>Krajnc, Matej</creator><creator>Ziherl, Primož</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3112-8114</orcidid><orcidid>https://orcid.org/0000-0002-5989-6679</orcidid><orcidid>https://orcid.org/0000-0002-5672-1232</orcidid></search><sort><creationdate>20241018</creationdate><title>Basolateral Mechanics Prevents Rigidity Transition in Epithelial Monolayers</title><author>Rozman, Jan ; Krajnc, Matej ; Ziherl, Primož</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c188t-48692d1dbfe017de1c0e6ae86cebc4020006a679b1777e502e5b94b883790fd93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Actomyosin - chemistry</topic><topic>Actomyosin - metabolism</topic><topic>Biomechanical Phenomena</topic><topic>Cell Polarity - physiology</topic><topic>Epithelial Cells - cytology</topic><topic>Epithelial Cells - physiology</topic><topic>Epithelium - physiology</topic><topic>Models, Biological</topic><topic>Surface Tension</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rozman, Jan</creatorcontrib><creatorcontrib>Krajnc, Matej</creatorcontrib><creatorcontrib>Ziherl, Primož</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rozman, Jan</au><au>Krajnc, Matej</au><au>Ziherl, Primož</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Basolateral Mechanics Prevents Rigidity Transition in Epithelial Monolayers</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2024-10-18</date><risdate>2024</risdate><volume>133</volume><issue>16</issue><spage>168401</spage><pages>168401-</pages><artnum>168401</artnum><issn>0031-9007</issn><issn>1079-7114</issn><eissn>1079-7114</eissn><abstract>The mechanics of epithelial tissues, which is governed by forces generated in various cell regions, is often investigated using two-dimensional models that account for the apically positioned actomyosin structures but neglect basolateral mechanics. We employ a more detailed three-dimensional model to study how lateral surface tensions affect the structure and rigidity of such tissues. We find that cells are apicobasally asymmetric, with one side appearing more ordered than the other depending on target cell apical perimeter. In contrast to the 2D model, which predicts a rigidity transition at large target perimeters, tissues in the 3D model remain solidlike across all parameter space.</abstract><cop>United States</cop><pmid>39485953</pmid><doi>10.1103/PhysRevLett.133.168401</doi><orcidid>https://orcid.org/0000-0003-3112-8114</orcidid><orcidid>https://orcid.org/0000-0002-5989-6679</orcidid><orcidid>https://orcid.org/0000-0002-5672-1232</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-9007 |
ispartof | Physical review letters, 2024-10, Vol.133 (16), p.168401, Article 168401 |
issn | 0031-9007 1079-7114 1079-7114 |
language | eng |
recordid | cdi_proquest_miscellaneous_3123367926 |
source | American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list) |
subjects | Actomyosin - chemistry Actomyosin - metabolism Biomechanical Phenomena Cell Polarity - physiology Epithelial Cells - cytology Epithelial Cells - physiology Epithelium - physiology Models, Biological Surface Tension |
title | Basolateral Mechanics Prevents Rigidity Transition in Epithelial Monolayers |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T15%3A49%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Basolateral%20Mechanics%20Prevents%20Rigidity%20Transition%20in%20Epithelial%20Monolayers&rft.jtitle=Physical%20review%20letters&rft.au=Rozman,%20Jan&rft.date=2024-10-18&rft.volume=133&rft.issue=16&rft.spage=168401&rft.pages=168401-&rft.artnum=168401&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/PhysRevLett.133.168401&rft_dat=%3Cproquest_cross%3E3123367926%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c188t-48692d1dbfe017de1c0e6ae86cebc4020006a679b1777e502e5b94b883790fd93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3123367926&rft_id=info:pmid/39485953&rfr_iscdi=true |