Loading…

Basolateral Mechanics Prevents Rigidity Transition in Epithelial Monolayers

The mechanics of epithelial tissues, which is governed by forces generated in various cell regions, is often investigated using two-dimensional models that account for the apically positioned actomyosin structures but neglect basolateral mechanics. We employ a more detailed three-dimensional model t...

Full description

Saved in:
Bibliographic Details
Published in:Physical review letters 2024-10, Vol.133 (16), p.168401, Article 168401
Main Authors: Rozman, Jan, Krajnc, Matej, Ziherl, Primož
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c188t-48692d1dbfe017de1c0e6ae86cebc4020006a679b1777e502e5b94b883790fd93
container_end_page
container_issue 16
container_start_page 168401
container_title Physical review letters
container_volume 133
creator Rozman, Jan
Krajnc, Matej
Ziherl, Primož
description The mechanics of epithelial tissues, which is governed by forces generated in various cell regions, is often investigated using two-dimensional models that account for the apically positioned actomyosin structures but neglect basolateral mechanics. We employ a more detailed three-dimensional model to study how lateral surface tensions affect the structure and rigidity of such tissues. We find that cells are apicobasally asymmetric, with one side appearing more ordered than the other depending on target cell apical perimeter. In contrast to the 2D model, which predicts a rigidity transition at large target perimeters, tissues in the 3D model remain solidlike across all parameter space.
doi_str_mv 10.1103/PhysRevLett.133.168401
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3123367926</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3123367926</sourcerecordid><originalsourceid>FETCH-LOGICAL-c188t-48692d1dbfe017de1c0e6ae86cebc4020006a679b1777e502e5b94b883790fd93</originalsourceid><addsrcrecordid>eNpNkEtPwkAUhSdGI4j-BdKlm-K9nTKPpRJ8RIyE4LqZthcZU1qcGUj67y0Bjau7Oec7Nx9jQ4QRIvC7-br1C9rPKIQRcj5CoVLAM9ZHkDqWiOk56wNwjDWA7LEr778AABOhLlmP61SN9Zj32euD8U1lAjlTRW9UrE1tCx_NHe2pDj5a2E9b2tBGS2dqb4Nt6sjW0XRrw5oqeyg1dQdoyflrdrEylaeb0x2wj8fpcvIcz96fXib3s7hApUKcKqGTEst8RYCyJCyAhCElCsqLFJLuTWGE1DlKKWkMCY1zneZKcalhVWo-YLdH7tY13zvyIdtYX1BVmZqanc84Jpx3gER0UXGMFq7x3tEq2zq7Ma7NELKDyOyfyKwTmR1FdsXhaWOXb6j8q_2a4z_-I3J7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3123367926</pqid></control><display><type>article</type><title>Basolateral Mechanics Prevents Rigidity Transition in Epithelial Monolayers</title><source>American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)</source><creator>Rozman, Jan ; Krajnc, Matej ; Ziherl, Primož</creator><creatorcontrib>Rozman, Jan ; Krajnc, Matej ; Ziherl, Primož</creatorcontrib><description>The mechanics of epithelial tissues, which is governed by forces generated in various cell regions, is often investigated using two-dimensional models that account for the apically positioned actomyosin structures but neglect basolateral mechanics. We employ a more detailed three-dimensional model to study how lateral surface tensions affect the structure and rigidity of such tissues. We find that cells are apicobasally asymmetric, with one side appearing more ordered than the other depending on target cell apical perimeter. In contrast to the 2D model, which predicts a rigidity transition at large target perimeters, tissues in the 3D model remain solidlike across all parameter space.</description><identifier>ISSN: 0031-9007</identifier><identifier>ISSN: 1079-7114</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.133.168401</identifier><identifier>PMID: 39485953</identifier><language>eng</language><publisher>United States</publisher><subject>Actomyosin - chemistry ; Actomyosin - metabolism ; Biomechanical Phenomena ; Cell Polarity - physiology ; Epithelial Cells - cytology ; Epithelial Cells - physiology ; Epithelium - physiology ; Models, Biological ; Surface Tension</subject><ispartof>Physical review letters, 2024-10, Vol.133 (16), p.168401, Article 168401</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c188t-48692d1dbfe017de1c0e6ae86cebc4020006a679b1777e502e5b94b883790fd93</cites><orcidid>0000-0003-3112-8114 ; 0000-0002-5989-6679 ; 0000-0002-5672-1232</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39485953$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rozman, Jan</creatorcontrib><creatorcontrib>Krajnc, Matej</creatorcontrib><creatorcontrib>Ziherl, Primož</creatorcontrib><title>Basolateral Mechanics Prevents Rigidity Transition in Epithelial Monolayers</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>The mechanics of epithelial tissues, which is governed by forces generated in various cell regions, is often investigated using two-dimensional models that account for the apically positioned actomyosin structures but neglect basolateral mechanics. We employ a more detailed three-dimensional model to study how lateral surface tensions affect the structure and rigidity of such tissues. We find that cells are apicobasally asymmetric, with one side appearing more ordered than the other depending on target cell apical perimeter. In contrast to the 2D model, which predicts a rigidity transition at large target perimeters, tissues in the 3D model remain solidlike across all parameter space.</description><subject>Actomyosin - chemistry</subject><subject>Actomyosin - metabolism</subject><subject>Biomechanical Phenomena</subject><subject>Cell Polarity - physiology</subject><subject>Epithelial Cells - cytology</subject><subject>Epithelial Cells - physiology</subject><subject>Epithelium - physiology</subject><subject>Models, Biological</subject><subject>Surface Tension</subject><issn>0031-9007</issn><issn>1079-7114</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkEtPwkAUhSdGI4j-BdKlm-K9nTKPpRJ8RIyE4LqZthcZU1qcGUj67y0Bjau7Oec7Nx9jQ4QRIvC7-br1C9rPKIQRcj5CoVLAM9ZHkDqWiOk56wNwjDWA7LEr778AABOhLlmP61SN9Zj32euD8U1lAjlTRW9UrE1tCx_NHe2pDj5a2E9b2tBGS2dqb4Nt6sjW0XRrw5oqeyg1dQdoyflrdrEylaeb0x2wj8fpcvIcz96fXib3s7hApUKcKqGTEst8RYCyJCyAhCElCsqLFJLuTWGE1DlKKWkMCY1zneZKcalhVWo-YLdH7tY13zvyIdtYX1BVmZqanc84Jpx3gER0UXGMFq7x3tEq2zq7Ma7NELKDyOyfyKwTmR1FdsXhaWOXb6j8q_2a4z_-I3J7</recordid><startdate>20241018</startdate><enddate>20241018</enddate><creator>Rozman, Jan</creator><creator>Krajnc, Matej</creator><creator>Ziherl, Primož</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3112-8114</orcidid><orcidid>https://orcid.org/0000-0002-5989-6679</orcidid><orcidid>https://orcid.org/0000-0002-5672-1232</orcidid></search><sort><creationdate>20241018</creationdate><title>Basolateral Mechanics Prevents Rigidity Transition in Epithelial Monolayers</title><author>Rozman, Jan ; Krajnc, Matej ; Ziherl, Primož</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c188t-48692d1dbfe017de1c0e6ae86cebc4020006a679b1777e502e5b94b883790fd93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Actomyosin - chemistry</topic><topic>Actomyosin - metabolism</topic><topic>Biomechanical Phenomena</topic><topic>Cell Polarity - physiology</topic><topic>Epithelial Cells - cytology</topic><topic>Epithelial Cells - physiology</topic><topic>Epithelium - physiology</topic><topic>Models, Biological</topic><topic>Surface Tension</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rozman, Jan</creatorcontrib><creatorcontrib>Krajnc, Matej</creatorcontrib><creatorcontrib>Ziherl, Primož</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rozman, Jan</au><au>Krajnc, Matej</au><au>Ziherl, Primož</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Basolateral Mechanics Prevents Rigidity Transition in Epithelial Monolayers</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2024-10-18</date><risdate>2024</risdate><volume>133</volume><issue>16</issue><spage>168401</spage><pages>168401-</pages><artnum>168401</artnum><issn>0031-9007</issn><issn>1079-7114</issn><eissn>1079-7114</eissn><abstract>The mechanics of epithelial tissues, which is governed by forces generated in various cell regions, is often investigated using two-dimensional models that account for the apically positioned actomyosin structures but neglect basolateral mechanics. We employ a more detailed three-dimensional model to study how lateral surface tensions affect the structure and rigidity of such tissues. We find that cells are apicobasally asymmetric, with one side appearing more ordered than the other depending on target cell apical perimeter. In contrast to the 2D model, which predicts a rigidity transition at large target perimeters, tissues in the 3D model remain solidlike across all parameter space.</abstract><cop>United States</cop><pmid>39485953</pmid><doi>10.1103/PhysRevLett.133.168401</doi><orcidid>https://orcid.org/0000-0003-3112-8114</orcidid><orcidid>https://orcid.org/0000-0002-5989-6679</orcidid><orcidid>https://orcid.org/0000-0002-5672-1232</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0031-9007
ispartof Physical review letters, 2024-10, Vol.133 (16), p.168401, Article 168401
issn 0031-9007
1079-7114
1079-7114
language eng
recordid cdi_proquest_miscellaneous_3123367926
source American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)
subjects Actomyosin - chemistry
Actomyosin - metabolism
Biomechanical Phenomena
Cell Polarity - physiology
Epithelial Cells - cytology
Epithelial Cells - physiology
Epithelium - physiology
Models, Biological
Surface Tension
title Basolateral Mechanics Prevents Rigidity Transition in Epithelial Monolayers
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T15%3A49%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Basolateral%20Mechanics%20Prevents%20Rigidity%20Transition%20in%20Epithelial%20Monolayers&rft.jtitle=Physical%20review%20letters&rft.au=Rozman,%20Jan&rft.date=2024-10-18&rft.volume=133&rft.issue=16&rft.spage=168401&rft.pages=168401-&rft.artnum=168401&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/PhysRevLett.133.168401&rft_dat=%3Cproquest_cross%3E3123367926%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c188t-48692d1dbfe017de1c0e6ae86cebc4020006a679b1777e502e5b94b883790fd93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3123367926&rft_id=info:pmid/39485953&rfr_iscdi=true