Loading…
Mechanical Characterisation of Polyurethane/Clay Nanocomposites
Polyurethane/clay nanocomposites have been synthesised from renewable sources. A polyether polyol was obtained by a method involving the synthesis of palm oil-based oleic acid from glycerol. This was then used in the production of a polyurethane by reaction with an isocyanate. Dodecylbenzene sulfoni...
Saved in:
Published in: | Polymers & polymer composites 2007-01, Vol.15 (8), p.647-652 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c411t-beb1f43b43c48dfae034257a7b89dfdb2bbea0550b407a434b6c597d3424b9b73 |
---|---|
cites | cdi_FETCH-LOGICAL-c411t-beb1f43b43c48dfae034257a7b89dfdb2bbea0550b407a434b6c597d3424b9b73 |
container_end_page | 652 |
container_issue | 8 |
container_start_page | 647 |
container_title | Polymers & polymer composites |
container_volume | 15 |
creator | RIHAYAT, T SAARI, M HILMI MAHMOOD, M WAN YUNUS, W. M. Z SURAYA, A. R DAHLAN, K. Z. H. M SAPUAN, S. M |
description | Polyurethane/clay nanocomposites have been synthesised from renewable sources. A polyether polyol was obtained by a method involving the synthesis of palm oil-based oleic acid from glycerol. This was then used in the production of a polyurethane by reaction with an isocyanate. Dodecylbenzene sulfonic acid (DBSA) was used as catalyst and emulsifier. The unmodified clay (kunipia-F) was treated with cetyltrimethyl ammonium bromide (to form “CTAB-mont”) and octadodecylamine (to form “ODA-mont”). The d-spacing in CTAB-mont and ODA-mont were 1.571 nm and 1.798 nm respectively, i.e. larger than that of the original “pure-mont” (1.142 nm). The organoclay was intercalated in the polyurethane, as confirmed by a wide angle x-ray diffraction (WAXD) pattern. The mechanical properties (including the dynamic mechanical properties) of pure polyurethane (PU) and PU/clay nanocomposites were measured. The results indicate that 1–5 wt.% of organoclay gave the most significant improvements in tensile properties and in glass transition temperature. |
doi_str_mv | 10.1177/096739110701500808 |
format | article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_31279021</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A180592326</galeid><sourcerecordid>A180592326</sourcerecordid><originalsourceid>FETCH-LOGICAL-c411t-beb1f43b43c48dfae034257a7b89dfdb2bbea0550b407a434b6c597d3424b9b73</originalsourceid><addsrcrecordid>eNplkU1LAzEQhoMoWKt_wNMi6G1tZpNsNicpxS-oHwc9L0k2sSm7m5rsHvrvTWlBUOYwMDzv8L4zCF0CvgXgfIZFyYkAwBwDw7jC1RGaAOVVXqTxMZrsgHxHnKKzGNcYF1CWbILuXoxeyd5p2WaLlQxSDya4KAfn-8zb7N232zGYITFmtmjlNnuVvde-2_joBhPP0YmVbTQXhz5Fnw_3H4unfPn2-LyYL3NNAYZcGQWWEkWJplVjpcGEFoxLrirR2EYVShmJGcOKYi4poarUTPAmUVQJxckU3ez3boL_Hk0c6s5Fbdo2-fJjrAkUXKRQCbz6A679GPrkrQbBKauAsATd7qEv2Zra9dYPKXmqxnRO-95Yl-ZzqDATBSnKJCj2Ah18jMHYehNcJ8O2BlzvPlD__0ASXR-syJjua4PstYu_SiFSOgbkB2Z8hJI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>197458135</pqid></control><display><type>article</type><title>Mechanical Characterisation of Polyurethane/Clay Nanocomposites</title><source>SAGE Open Access</source><creator>RIHAYAT, T ; SAARI, M ; HILMI MAHMOOD, M ; WAN YUNUS, W. M. Z ; SURAYA, A. R ; DAHLAN, K. Z. H. M ; SAPUAN, S. M</creator><creatorcontrib>RIHAYAT, T ; SAARI, M ; HILMI MAHMOOD, M ; WAN YUNUS, W. M. Z ; SURAYA, A. R ; DAHLAN, K. Z. H. M ; SAPUAN, S. M</creatorcontrib><description>Polyurethane/clay nanocomposites have been synthesised from renewable sources. A polyether polyol was obtained by a method involving the synthesis of palm oil-based oleic acid from glycerol. This was then used in the production of a polyurethane by reaction with an isocyanate. Dodecylbenzene sulfonic acid (DBSA) was used as catalyst and emulsifier. The unmodified clay (kunipia-F) was treated with cetyltrimethyl ammonium bromide (to form “CTAB-mont”) and octadodecylamine (to form “ODA-mont”). The d-spacing in CTAB-mont and ODA-mont were 1.571 nm and 1.798 nm respectively, i.e. larger than that of the original “pure-mont” (1.142 nm). The organoclay was intercalated in the polyurethane, as confirmed by a wide angle x-ray diffraction (WAXD) pattern. The mechanical properties (including the dynamic mechanical properties) of pure polyurethane (PU) and PU/clay nanocomposites were measured. The results indicate that 1–5 wt.% of organoclay gave the most significant improvements in tensile properties and in glass transition temperature.</description><identifier>ISSN: 0967-3911</identifier><identifier>EISSN: 1478-2391</identifier><identifier>DOI: 10.1177/096739110701500808</identifier><language>eng</language><publisher>Shrewsbury: Rapra Technology</publisher><subject>Applied sciences ; Clay ; Composite materials ; Composites ; Exact sciences and technology ; Forms of application and semi-finished materials ; Mechanical properties ; Nanoparticles ; Polymer industry, paints, wood ; Polyurethane ; Polyurethanes ; Technology of polymers ; Vegetable oils</subject><ispartof>Polymers & polymer composites, 2007-01, Vol.15 (8), p.647-652</ispartof><rights>2008 INIST-CNRS</rights><rights>COPYRIGHT 2007 Sage Publications Ltd. (UK)</rights><rights>Copyright Rapra Technology Limited 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c411t-beb1f43b43c48dfae034257a7b89dfdb2bbea0550b407a434b6c597d3424b9b73</citedby><cites>FETCH-LOGICAL-c411t-beb1f43b43c48dfae034257a7b89dfdb2bbea0550b407a434b6c597d3424b9b73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19942451$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>RIHAYAT, T</creatorcontrib><creatorcontrib>SAARI, M</creatorcontrib><creatorcontrib>HILMI MAHMOOD, M</creatorcontrib><creatorcontrib>WAN YUNUS, W. M. Z</creatorcontrib><creatorcontrib>SURAYA, A. R</creatorcontrib><creatorcontrib>DAHLAN, K. Z. H. M</creatorcontrib><creatorcontrib>SAPUAN, S. M</creatorcontrib><title>Mechanical Characterisation of Polyurethane/Clay Nanocomposites</title><title>Polymers & polymer composites</title><description>Polyurethane/clay nanocomposites have been synthesised from renewable sources. A polyether polyol was obtained by a method involving the synthesis of palm oil-based oleic acid from glycerol. This was then used in the production of a polyurethane by reaction with an isocyanate. Dodecylbenzene sulfonic acid (DBSA) was used as catalyst and emulsifier. The unmodified clay (kunipia-F) was treated with cetyltrimethyl ammonium bromide (to form “CTAB-mont”) and octadodecylamine (to form “ODA-mont”). The d-spacing in CTAB-mont and ODA-mont were 1.571 nm and 1.798 nm respectively, i.e. larger than that of the original “pure-mont” (1.142 nm). The organoclay was intercalated in the polyurethane, as confirmed by a wide angle x-ray diffraction (WAXD) pattern. The mechanical properties (including the dynamic mechanical properties) of pure polyurethane (PU) and PU/clay nanocomposites were measured. The results indicate that 1–5 wt.% of organoclay gave the most significant improvements in tensile properties and in glass transition temperature.</description><subject>Applied sciences</subject><subject>Clay</subject><subject>Composite materials</subject><subject>Composites</subject><subject>Exact sciences and technology</subject><subject>Forms of application and semi-finished materials</subject><subject>Mechanical properties</subject><subject>Nanoparticles</subject><subject>Polymer industry, paints, wood</subject><subject>Polyurethane</subject><subject>Polyurethanes</subject><subject>Technology of polymers</subject><subject>Vegetable oils</subject><issn>0967-3911</issn><issn>1478-2391</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNplkU1LAzEQhoMoWKt_wNMi6G1tZpNsNicpxS-oHwc9L0k2sSm7m5rsHvrvTWlBUOYwMDzv8L4zCF0CvgXgfIZFyYkAwBwDw7jC1RGaAOVVXqTxMZrsgHxHnKKzGNcYF1CWbILuXoxeyd5p2WaLlQxSDya4KAfn-8zb7N232zGYITFmtmjlNnuVvde-2_joBhPP0YmVbTQXhz5Fnw_3H4unfPn2-LyYL3NNAYZcGQWWEkWJplVjpcGEFoxLrirR2EYVShmJGcOKYi4poarUTPAmUVQJxckU3ez3boL_Hk0c6s5Fbdo2-fJjrAkUXKRQCbz6A679GPrkrQbBKauAsATd7qEv2Zra9dYPKXmqxnRO-95Yl-ZzqDATBSnKJCj2Ah18jMHYehNcJ8O2BlzvPlD__0ASXR-syJjua4PstYu_SiFSOgbkB2Z8hJI</recordid><startdate>20070101</startdate><enddate>20070101</enddate><creator>RIHAYAT, T</creator><creator>SAARI, M</creator><creator>HILMI MAHMOOD, M</creator><creator>WAN YUNUS, W. M. Z</creator><creator>SURAYA, A. R</creator><creator>DAHLAN, K. Z. H. M</creator><creator>SAPUAN, S. M</creator><general>Rapra Technology</general><general>Sage Publications Ltd. (UK)</general><general>Sage Publications Ltd</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>EHMNL</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>20070101</creationdate><title>Mechanical Characterisation of Polyurethane/Clay Nanocomposites</title><author>RIHAYAT, T ; SAARI, M ; HILMI MAHMOOD, M ; WAN YUNUS, W. M. Z ; SURAYA, A. R ; DAHLAN, K. Z. H. M ; SAPUAN, S. M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c411t-beb1f43b43c48dfae034257a7b89dfdb2bbea0550b407a434b6c597d3424b9b73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Applied sciences</topic><topic>Clay</topic><topic>Composite materials</topic><topic>Composites</topic><topic>Exact sciences and technology</topic><topic>Forms of application and semi-finished materials</topic><topic>Mechanical properties</topic><topic>Nanoparticles</topic><topic>Polymer industry, paints, wood</topic><topic>Polyurethane</topic><topic>Polyurethanes</topic><topic>Technology of polymers</topic><topic>Vegetable oils</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>RIHAYAT, T</creatorcontrib><creatorcontrib>SAARI, M</creatorcontrib><creatorcontrib>HILMI MAHMOOD, M</creatorcontrib><creatorcontrib>WAN YUNUS, W. M. Z</creatorcontrib><creatorcontrib>SURAYA, A. R</creatorcontrib><creatorcontrib>DAHLAN, K. Z. H. M</creatorcontrib><creatorcontrib>SAPUAN, S. M</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>UK & Ireland Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>https://resources.nclive.org/materials</collection><collection>ProQuest Research Library</collection><collection>ProQuest Science Journals</collection><collection>Research Library (Corporate)</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Polymers & polymer composites</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>RIHAYAT, T</au><au>SAARI, M</au><au>HILMI MAHMOOD, M</au><au>WAN YUNUS, W. M. Z</au><au>SURAYA, A. R</au><au>DAHLAN, K. Z. H. M</au><au>SAPUAN, S. M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanical Characterisation of Polyurethane/Clay Nanocomposites</atitle><jtitle>Polymers & polymer composites</jtitle><date>2007-01-01</date><risdate>2007</risdate><volume>15</volume><issue>8</issue><spage>647</spage><epage>652</epage><pages>647-652</pages><issn>0967-3911</issn><eissn>1478-2391</eissn><abstract>Polyurethane/clay nanocomposites have been synthesised from renewable sources. A polyether polyol was obtained by a method involving the synthesis of palm oil-based oleic acid from glycerol. This was then used in the production of a polyurethane by reaction with an isocyanate. Dodecylbenzene sulfonic acid (DBSA) was used as catalyst and emulsifier. The unmodified clay (kunipia-F) was treated with cetyltrimethyl ammonium bromide (to form “CTAB-mont”) and octadodecylamine (to form “ODA-mont”). The d-spacing in CTAB-mont and ODA-mont were 1.571 nm and 1.798 nm respectively, i.e. larger than that of the original “pure-mont” (1.142 nm). The organoclay was intercalated in the polyurethane, as confirmed by a wide angle x-ray diffraction (WAXD) pattern. The mechanical properties (including the dynamic mechanical properties) of pure polyurethane (PU) and PU/clay nanocomposites were measured. The results indicate that 1–5 wt.% of organoclay gave the most significant improvements in tensile properties and in glass transition temperature.</abstract><cop>Shrewsbury</cop><pub>Rapra Technology</pub><doi>10.1177/096739110701500808</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0967-3911 |
ispartof | Polymers & polymer composites, 2007-01, Vol.15 (8), p.647-652 |
issn | 0967-3911 1478-2391 |
language | eng |
recordid | cdi_proquest_miscellaneous_31279021 |
source | SAGE Open Access |
subjects | Applied sciences Clay Composite materials Composites Exact sciences and technology Forms of application and semi-finished materials Mechanical properties Nanoparticles Polymer industry, paints, wood Polyurethane Polyurethanes Technology of polymers Vegetable oils |
title | Mechanical Characterisation of Polyurethane/Clay Nanocomposites |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T19%3A50%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanical%20Characterisation%20of%20Polyurethane/Clay%20Nanocomposites&rft.jtitle=Polymers%20&%20polymer%20composites&rft.au=RIHAYAT,%20T&rft.date=2007-01-01&rft.volume=15&rft.issue=8&rft.spage=647&rft.epage=652&rft.pages=647-652&rft.issn=0967-3911&rft.eissn=1478-2391&rft_id=info:doi/10.1177/096739110701500808&rft_dat=%3Cgale_proqu%3EA180592326%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c411t-beb1f43b43c48dfae034257a7b89dfdb2bbea0550b407a434b6c597d3424b9b73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=197458135&rft_id=info:pmid/&rft_galeid=A180592326&rfr_iscdi=true |