Loading…
Optogenetic Manipulation of Covert Attention in the Nonhuman Primate
Optogenetics affords new opportunities to interrogate neuronal circuits that control behavior. In primates, the usefulness of optogenetics in studying cognitive functions remains a challenge. The technique has been successfully wielded, but behavioral effects have been demonstrated primarily for sen...
Saved in:
Published in: | Journal of cognitive neuroscience 2024-11, p.1-20 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 20 |
container_issue | |
container_start_page | 1 |
container_title | Journal of cognitive neuroscience |
container_volume | |
creator | Katz, Leor N Bohlen, Martin O Yu, Gongchen Mejias-Aponte, Carlos Sommer, Marc A Krauzlis, Richard J |
description | Optogenetics affords new opportunities to interrogate neuronal circuits that control behavior. In primates, the usefulness of optogenetics in studying cognitive functions remains a challenge. The technique has been successfully wielded, but behavioral effects have been demonstrated primarily for sensorimotor processes. Here, we tested whether brief optogenetic suppression of primate superior colliculus can change performance in a covert attention task, in addition to previously reported optogenetic effects on saccadic eye movements. We used an attention task that required the monkey to detect and report a stimulus change at a cued location via joystick release, while ignoring changes at an uncued location. When the cued location was positioned in the response fields of transduced neurons in the superior colliculus, transient light delivery coincident with the stimulus change disrupted the monkey's detection performance, significantly lowering hit rates. When the cued location was elsewhere, hit rates were unaltered, indicating that the effect was spatially specific and not a motor deficit. Hit rates for trials with only one stimulus were also unaltered, indicating that the effect depended on selection among distractors rather than a low-level visual impairment. Psychophysical analysis revealed that optogenetic suppression increased perceptual threshold, but only for locations matching the transduced site. These data show that optogenetic manipulations can cause brief and spatially specific deficits in covert attention, independent of sensorimotor functions. This dissociation of effect, and the temporal precision provided by the technique, demonstrates the utility of optogenetics in interrogating neuronal circuits that mediate cognitive functions in the primate. |
doi_str_mv | 10.1162/jocn_a_02274 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3128318157</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3128318157</sourcerecordid><originalsourceid>FETCH-LOGICAL-c938-17b994a20b4e81409f844c4ad4c9766be12dfe2283fcdfaf1800068420d97d663</originalsourceid><addsrcrecordid>eNpNkD1PwzAURS0EoqGwMaOMDARsx0nssSqfUqEMHdgsx3mmqRI7xA4S_56UFsR0pafzrq4OQucEXxOS05uN01YqiSkt2AGKSJbihHPBD1GEx0gEFW8TdOL9BmNMs5wdo0kqMiyw4BG6XXbBvYOFUOv4Wdm6GxoVamdjZ-K5-4Q-xLMQwP7cahuHNcQvzq6HVtn4ta9bFeAUHRnVeDjb5xSt7u9W88dksXx4ms8WiRYpT0hRCsEUxSUDThgWhjOmmaqYFkWel0BoZYBSnhpdGWUIHwfnnFFciaLK83SKLne1Xe8-BvBBtrXX0DTKghu8TMn4SzjJihG92qG6d973YGS3ndp_SYLlVpv8r23EL_bNQ9lC9Qf_ekq_ATiuaRk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3128318157</pqid></control><display><type>article</type><title>Optogenetic Manipulation of Covert Attention in the Nonhuman Primate</title><source>MIT Press Journals</source><creator>Katz, Leor N ; Bohlen, Martin O ; Yu, Gongchen ; Mejias-Aponte, Carlos ; Sommer, Marc A ; Krauzlis, Richard J</creator><creatorcontrib>Katz, Leor N ; Bohlen, Martin O ; Yu, Gongchen ; Mejias-Aponte, Carlos ; Sommer, Marc A ; Krauzlis, Richard J</creatorcontrib><description>Optogenetics affords new opportunities to interrogate neuronal circuits that control behavior. In primates, the usefulness of optogenetics in studying cognitive functions remains a challenge. The technique has been successfully wielded, but behavioral effects have been demonstrated primarily for sensorimotor processes. Here, we tested whether brief optogenetic suppression of primate superior colliculus can change performance in a covert attention task, in addition to previously reported optogenetic effects on saccadic eye movements. We used an attention task that required the monkey to detect and report a stimulus change at a cued location via joystick release, while ignoring changes at an uncued location. When the cued location was positioned in the response fields of transduced neurons in the superior colliculus, transient light delivery coincident with the stimulus change disrupted the monkey's detection performance, significantly lowering hit rates. When the cued location was elsewhere, hit rates were unaltered, indicating that the effect was spatially specific and not a motor deficit. Hit rates for trials with only one stimulus were also unaltered, indicating that the effect depended on selection among distractors rather than a low-level visual impairment. Psychophysical analysis revealed that optogenetic suppression increased perceptual threshold, but only for locations matching the transduced site. These data show that optogenetic manipulations can cause brief and spatially specific deficits in covert attention, independent of sensorimotor functions. This dissociation of effect, and the temporal precision provided by the technique, demonstrates the utility of optogenetics in interrogating neuronal circuits that mediate cognitive functions in the primate.</description><identifier>ISSN: 0898-929X</identifier><identifier>ISSN: 1530-8898</identifier><identifier>EISSN: 1530-8898</identifier><identifier>DOI: 10.1162/jocn_a_02274</identifier><identifier>PMID: 39509098</identifier><language>eng</language><publisher>United States</publisher><ispartof>Journal of cognitive neuroscience, 2024-11, p.1-20</ispartof><rights>2024 Massachusetts Institute of Technology.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39509098$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Katz, Leor N</creatorcontrib><creatorcontrib>Bohlen, Martin O</creatorcontrib><creatorcontrib>Yu, Gongchen</creatorcontrib><creatorcontrib>Mejias-Aponte, Carlos</creatorcontrib><creatorcontrib>Sommer, Marc A</creatorcontrib><creatorcontrib>Krauzlis, Richard J</creatorcontrib><title>Optogenetic Manipulation of Covert Attention in the Nonhuman Primate</title><title>Journal of cognitive neuroscience</title><addtitle>J Cogn Neurosci</addtitle><description>Optogenetics affords new opportunities to interrogate neuronal circuits that control behavior. In primates, the usefulness of optogenetics in studying cognitive functions remains a challenge. The technique has been successfully wielded, but behavioral effects have been demonstrated primarily for sensorimotor processes. Here, we tested whether brief optogenetic suppression of primate superior colliculus can change performance in a covert attention task, in addition to previously reported optogenetic effects on saccadic eye movements. We used an attention task that required the monkey to detect and report a stimulus change at a cued location via joystick release, while ignoring changes at an uncued location. When the cued location was positioned in the response fields of transduced neurons in the superior colliculus, transient light delivery coincident with the stimulus change disrupted the monkey's detection performance, significantly lowering hit rates. When the cued location was elsewhere, hit rates were unaltered, indicating that the effect was spatially specific and not a motor deficit. Hit rates for trials with only one stimulus were also unaltered, indicating that the effect depended on selection among distractors rather than a low-level visual impairment. Psychophysical analysis revealed that optogenetic suppression increased perceptual threshold, but only for locations matching the transduced site. These data show that optogenetic manipulations can cause brief and spatially specific deficits in covert attention, independent of sensorimotor functions. This dissociation of effect, and the temporal precision provided by the technique, demonstrates the utility of optogenetics in interrogating neuronal circuits that mediate cognitive functions in the primate.</description><issn>0898-929X</issn><issn>1530-8898</issn><issn>1530-8898</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkD1PwzAURS0EoqGwMaOMDARsx0nssSqfUqEMHdgsx3mmqRI7xA4S_56UFsR0pafzrq4OQucEXxOS05uN01YqiSkt2AGKSJbihHPBD1GEx0gEFW8TdOL9BmNMs5wdo0kqMiyw4BG6XXbBvYOFUOv4Wdm6GxoVamdjZ-K5-4Q-xLMQwP7cahuHNcQvzq6HVtn4ta9bFeAUHRnVeDjb5xSt7u9W88dksXx4ms8WiRYpT0hRCsEUxSUDThgWhjOmmaqYFkWel0BoZYBSnhpdGWUIHwfnnFFciaLK83SKLne1Xe8-BvBBtrXX0DTKghu8TMn4SzjJihG92qG6d973YGS3ndp_SYLlVpv8r23EL_bNQ9lC9Qf_ekq_ATiuaRk</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Katz, Leor N</creator><creator>Bohlen, Martin O</creator><creator>Yu, Gongchen</creator><creator>Mejias-Aponte, Carlos</creator><creator>Sommer, Marc A</creator><creator>Krauzlis, Richard J</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20241101</creationdate><title>Optogenetic Manipulation of Covert Attention in the Nonhuman Primate</title><author>Katz, Leor N ; Bohlen, Martin O ; Yu, Gongchen ; Mejias-Aponte, Carlos ; Sommer, Marc A ; Krauzlis, Richard J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c938-17b994a20b4e81409f844c4ad4c9766be12dfe2283fcdfaf1800068420d97d663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Katz, Leor N</creatorcontrib><creatorcontrib>Bohlen, Martin O</creatorcontrib><creatorcontrib>Yu, Gongchen</creatorcontrib><creatorcontrib>Mejias-Aponte, Carlos</creatorcontrib><creatorcontrib>Sommer, Marc A</creatorcontrib><creatorcontrib>Krauzlis, Richard J</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of cognitive neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Katz, Leor N</au><au>Bohlen, Martin O</au><au>Yu, Gongchen</au><au>Mejias-Aponte, Carlos</au><au>Sommer, Marc A</au><au>Krauzlis, Richard J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optogenetic Manipulation of Covert Attention in the Nonhuman Primate</atitle><jtitle>Journal of cognitive neuroscience</jtitle><addtitle>J Cogn Neurosci</addtitle><date>2024-11-01</date><risdate>2024</risdate><spage>1</spage><epage>20</epage><pages>1-20</pages><issn>0898-929X</issn><issn>1530-8898</issn><eissn>1530-8898</eissn><abstract>Optogenetics affords new opportunities to interrogate neuronal circuits that control behavior. In primates, the usefulness of optogenetics in studying cognitive functions remains a challenge. The technique has been successfully wielded, but behavioral effects have been demonstrated primarily for sensorimotor processes. Here, we tested whether brief optogenetic suppression of primate superior colliculus can change performance in a covert attention task, in addition to previously reported optogenetic effects on saccadic eye movements. We used an attention task that required the monkey to detect and report a stimulus change at a cued location via joystick release, while ignoring changes at an uncued location. When the cued location was positioned in the response fields of transduced neurons in the superior colliculus, transient light delivery coincident with the stimulus change disrupted the monkey's detection performance, significantly lowering hit rates. When the cued location was elsewhere, hit rates were unaltered, indicating that the effect was spatially specific and not a motor deficit. Hit rates for trials with only one stimulus were also unaltered, indicating that the effect depended on selection among distractors rather than a low-level visual impairment. Psychophysical analysis revealed that optogenetic suppression increased perceptual threshold, but only for locations matching the transduced site. These data show that optogenetic manipulations can cause brief and spatially specific deficits in covert attention, independent of sensorimotor functions. This dissociation of effect, and the temporal precision provided by the technique, demonstrates the utility of optogenetics in interrogating neuronal circuits that mediate cognitive functions in the primate.</abstract><cop>United States</cop><pmid>39509098</pmid><doi>10.1162/jocn_a_02274</doi><tpages>20</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0898-929X |
ispartof | Journal of cognitive neuroscience, 2024-11, p.1-20 |
issn | 0898-929X 1530-8898 1530-8898 |
language | eng |
recordid | cdi_proquest_miscellaneous_3128318157 |
source | MIT Press Journals |
title | Optogenetic Manipulation of Covert Attention in the Nonhuman Primate |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T00%3A43%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optogenetic%20Manipulation%20of%20Covert%20Attention%20in%20the%20Nonhuman%20Primate&rft.jtitle=Journal%20of%20cognitive%20neuroscience&rft.au=Katz,%20Leor%20N&rft.date=2024-11-01&rft.spage=1&rft.epage=20&rft.pages=1-20&rft.issn=0898-929X&rft.eissn=1530-8898&rft_id=info:doi/10.1162/jocn_a_02274&rft_dat=%3Cproquest_cross%3E3128318157%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c938-17b994a20b4e81409f844c4ad4c9766be12dfe2283fcdfaf1800068420d97d663%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3128318157&rft_id=info:pmid/39509098&rfr_iscdi=true |