Loading…

Elucidating the Structural Evolution of O3-type NaNi1/3Fe1/3Mn1/3O2: A Prototype Cathode for Na-Ion Battery

Extending the depth-of-charge (DoC) of the layered oxide cathode presents an essential route to improve the competitiveness of the Na-ion battery versus the commercialized LiFePO4-based Li-ion battery (0.8 CNY/Wh). However, the DoC-dependent boundary between detrimental/irreversible structural disto...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the American Chemical Society 2024-11, Vol.146 (46), p.31860-31872
Main Authors: Fang, Kai, Yin, Jianhua, Zeng, Guifan, Wu, Zixin, Tang, Yonglin, Yu, Dongyan, Luo, Haiyan, Liu, Qirui, Zhang, Qinghua, Qiu, Tian, Huang, Huan, Ning, Ziyang, Ouyang, Chuying, Gu, Lin, Qiao, Yu, Sun, Shi-Gang
Format: Article
Language:English
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 31872
container_issue 46
container_start_page 31860
container_title Journal of the American Chemical Society
container_volume 146
creator Fang, Kai
Yin, Jianhua
Zeng, Guifan
Wu, Zixin
Tang, Yonglin
Yu, Dongyan
Luo, Haiyan
Liu, Qirui
Zhang, Qinghua
Qiu, Tian
Huang, Huan
Ning, Ziyang
Ouyang, Chuying
Gu, Lin
Qiao, Yu
Sun, Shi-Gang
description Extending the depth-of-charge (DoC) of the layered oxide cathode presents an essential route to improve the competitiveness of the Na-ion battery versus the commercialized LiFePO4-based Li-ion battery (0.8 CNY/Wh). However, the DoC-dependent boundary between detrimental/irreversible structural distortion and neutral/reversible structure interconversion cannot be clearly distinguished, which is attributed to the ambiguous recognition of correlation among the complex phase transition, local covalent environment evolution, and charge compensation. Herein, to bridge the above gap, we employed O3-NaNi1/3Fe1/3Mn1/3O2 as the prototype cathode and extended the target DoC from typical Na0.4 (∼125 mAh/g, 4.0 V cutoff) to Na0.2 (∼180 mAh/g, 4.3 V cutoff). Regarding phase transition and charge compensation, the O3-to-P3 phase transition occurs before moderate Na0.4-DoC (Fe/Mn redox silence, Ni oxidation dominated), while further desodiation (start from Na0.4) induces a P-to-O slab transition, resulting in the coexistence of P3 and OP2 phases and subsequent OP2/O3 intergrowth phases at higher DoC (Na0.2), upon which the Fe3+-to-Fe4+ oxidation is activated for capacity contribution. The local covalent environment presents severer deviation at high DoC (merely 0.2 mol desodiation from Na0.4 to Na0.2), which can be attributed not only to the slab gliding induced by the P-to-O slab transition but also to the further aggravation caused by the Jahn–Teller distortion of the FeO6 octahedron. Such irreversible distortion of the local covalent environment would be accumulated and evolved/deteriorated into structural degradation during long-term cycling. Furthermore, the rate-dependent artificial regulation of redox process has been demonstrated and the doping strategy toward structural stabilization has been proposed.
doi_str_mv 10.1021/jacs.4c11049
format article
fullrecord <record><control><sourceid>proquest_acs_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_3128325474</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3128325474</sourcerecordid><originalsourceid>FETCH-LOGICAL-a151t-cc5788895a59b834f496c3f38e19d46e4931bffb6851dac64064c9257a76a9d13</originalsourceid><addsrcrecordid>eNpFkE1LAzEQhoMoWKs3f0COXrbN5GsTb7W0WqitoJ6XNJu1W9dNTbJC_71bFby8w8DzDsOD0DWQERAK452xccQtAOH6BA1AUJIJoPIUDQghNMuVZOfoIsZdv3KqYIDeZ01n69Kkun3DaevwcwqdTV0wDZ59-aZLtW-xr_CaZemwd3hlVjWM2dz18dj2saa3eIKfgk_-B5iatPWlw5UPPZwt-vqdScmFwyU6q0wT3dXfHKLX-exl-pAt1_eL6WSZGRCQMmtFrpTSwgi9UYxXXEvLKqYc6JJLxzWDTVVtpBJQGis5kdxqKnKTS6NLYEN083t3H_xn52IqPupoXdOY1vkuFgyoYlTwnP-jvbli57vQ9o8VQIqjz-Los_jzyb4BjgRmTA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3128325474</pqid></control><display><type>article</type><title>Elucidating the Structural Evolution of O3-type NaNi1/3Fe1/3Mn1/3O2: A Prototype Cathode for Na-Ion Battery</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Fang, Kai ; Yin, Jianhua ; Zeng, Guifan ; Wu, Zixin ; Tang, Yonglin ; Yu, Dongyan ; Luo, Haiyan ; Liu, Qirui ; Zhang, Qinghua ; Qiu, Tian ; Huang, Huan ; Ning, Ziyang ; Ouyang, Chuying ; Gu, Lin ; Qiao, Yu ; Sun, Shi-Gang</creator><creatorcontrib>Fang, Kai ; Yin, Jianhua ; Zeng, Guifan ; Wu, Zixin ; Tang, Yonglin ; Yu, Dongyan ; Luo, Haiyan ; Liu, Qirui ; Zhang, Qinghua ; Qiu, Tian ; Huang, Huan ; Ning, Ziyang ; Ouyang, Chuying ; Gu, Lin ; Qiao, Yu ; Sun, Shi-Gang</creatorcontrib><description>Extending the depth-of-charge (DoC) of the layered oxide cathode presents an essential route to improve the competitiveness of the Na-ion battery versus the commercialized LiFePO4-based Li-ion battery (0.8 CNY/Wh). However, the DoC-dependent boundary between detrimental/irreversible structural distortion and neutral/reversible structure interconversion cannot be clearly distinguished, which is attributed to the ambiguous recognition of correlation among the complex phase transition, local covalent environment evolution, and charge compensation. Herein, to bridge the above gap, we employed O3-NaNi1/3Fe1/3Mn1/3O2 as the prototype cathode and extended the target DoC from typical Na0.4 (∼125 mAh/g, 4.0 V cutoff) to Na0.2 (∼180 mAh/g, 4.3 V cutoff). Regarding phase transition and charge compensation, the O3-to-P3 phase transition occurs before moderate Na0.4-DoC (Fe/Mn redox silence, Ni oxidation dominated), while further desodiation (start from Na0.4) induces a P-to-O slab transition, resulting in the coexistence of P3 and OP2 phases and subsequent OP2/O3 intergrowth phases at higher DoC (Na0.2), upon which the Fe3+-to-Fe4+ oxidation is activated for capacity contribution. The local covalent environment presents severer deviation at high DoC (merely 0.2 mol desodiation from Na0.4 to Na0.2), which can be attributed not only to the slab gliding induced by the P-to-O slab transition but also to the further aggravation caused by the Jahn–Teller distortion of the FeO6 octahedron. Such irreversible distortion of the local covalent environment would be accumulated and evolved/deteriorated into structural degradation during long-term cycling. Furthermore, the rate-dependent artificial regulation of redox process has been demonstrated and the doping strategy toward structural stabilization has been proposed.</description><identifier>ISSN: 0002-7863</identifier><identifier>ISSN: 1520-5126</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.4c11049</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Journal of the American Chemical Society, 2024-11, Vol.146 (46), p.31860-31872</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-8891-1682 ; 0000-0002-2191-3875 ; 0000-0003-2327-4090</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Fang, Kai</creatorcontrib><creatorcontrib>Yin, Jianhua</creatorcontrib><creatorcontrib>Zeng, Guifan</creatorcontrib><creatorcontrib>Wu, Zixin</creatorcontrib><creatorcontrib>Tang, Yonglin</creatorcontrib><creatorcontrib>Yu, Dongyan</creatorcontrib><creatorcontrib>Luo, Haiyan</creatorcontrib><creatorcontrib>Liu, Qirui</creatorcontrib><creatorcontrib>Zhang, Qinghua</creatorcontrib><creatorcontrib>Qiu, Tian</creatorcontrib><creatorcontrib>Huang, Huan</creatorcontrib><creatorcontrib>Ning, Ziyang</creatorcontrib><creatorcontrib>Ouyang, Chuying</creatorcontrib><creatorcontrib>Gu, Lin</creatorcontrib><creatorcontrib>Qiao, Yu</creatorcontrib><creatorcontrib>Sun, Shi-Gang</creatorcontrib><title>Elucidating the Structural Evolution of O3-type NaNi1/3Fe1/3Mn1/3O2: A Prototype Cathode for Na-Ion Battery</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>Extending the depth-of-charge (DoC) of the layered oxide cathode presents an essential route to improve the competitiveness of the Na-ion battery versus the commercialized LiFePO4-based Li-ion battery (0.8 CNY/Wh). However, the DoC-dependent boundary between detrimental/irreversible structural distortion and neutral/reversible structure interconversion cannot be clearly distinguished, which is attributed to the ambiguous recognition of correlation among the complex phase transition, local covalent environment evolution, and charge compensation. Herein, to bridge the above gap, we employed O3-NaNi1/3Fe1/3Mn1/3O2 as the prototype cathode and extended the target DoC from typical Na0.4 (∼125 mAh/g, 4.0 V cutoff) to Na0.2 (∼180 mAh/g, 4.3 V cutoff). Regarding phase transition and charge compensation, the O3-to-P3 phase transition occurs before moderate Na0.4-DoC (Fe/Mn redox silence, Ni oxidation dominated), while further desodiation (start from Na0.4) induces a P-to-O slab transition, resulting in the coexistence of P3 and OP2 phases and subsequent OP2/O3 intergrowth phases at higher DoC (Na0.2), upon which the Fe3+-to-Fe4+ oxidation is activated for capacity contribution. The local covalent environment presents severer deviation at high DoC (merely 0.2 mol desodiation from Na0.4 to Na0.2), which can be attributed not only to the slab gliding induced by the P-to-O slab transition but also to the further aggravation caused by the Jahn–Teller distortion of the FeO6 octahedron. Such irreversible distortion of the local covalent environment would be accumulated and evolved/deteriorated into structural degradation during long-term cycling. Furthermore, the rate-dependent artificial regulation of redox process has been demonstrated and the doping strategy toward structural stabilization has been proposed.</description><issn>0002-7863</issn><issn>1520-5126</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpFkE1LAzEQhoMoWKs3f0COXrbN5GsTb7W0WqitoJ6XNJu1W9dNTbJC_71bFby8w8DzDsOD0DWQERAK452xccQtAOH6BA1AUJIJoPIUDQghNMuVZOfoIsZdv3KqYIDeZ01n69Kkun3DaevwcwqdTV0wDZ59-aZLtW-xr_CaZemwd3hlVjWM2dz18dj2saa3eIKfgk_-B5iatPWlw5UPPZwt-vqdScmFwyU6q0wT3dXfHKLX-exl-pAt1_eL6WSZGRCQMmtFrpTSwgi9UYxXXEvLKqYc6JJLxzWDTVVtpBJQGis5kdxqKnKTS6NLYEN083t3H_xn52IqPupoXdOY1vkuFgyoYlTwnP-jvbli57vQ9o8VQIqjz-Los_jzyb4BjgRmTA</recordid><startdate>20241120</startdate><enddate>20241120</enddate><creator>Fang, Kai</creator><creator>Yin, Jianhua</creator><creator>Zeng, Guifan</creator><creator>Wu, Zixin</creator><creator>Tang, Yonglin</creator><creator>Yu, Dongyan</creator><creator>Luo, Haiyan</creator><creator>Liu, Qirui</creator><creator>Zhang, Qinghua</creator><creator>Qiu, Tian</creator><creator>Huang, Huan</creator><creator>Ning, Ziyang</creator><creator>Ouyang, Chuying</creator><creator>Gu, Lin</creator><creator>Qiao, Yu</creator><creator>Sun, Shi-Gang</creator><general>American Chemical Society</general><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8891-1682</orcidid><orcidid>https://orcid.org/0000-0002-2191-3875</orcidid><orcidid>https://orcid.org/0000-0003-2327-4090</orcidid></search><sort><creationdate>20241120</creationdate><title>Elucidating the Structural Evolution of O3-type NaNi1/3Fe1/3Mn1/3O2: A Prototype Cathode for Na-Ion Battery</title><author>Fang, Kai ; Yin, Jianhua ; Zeng, Guifan ; Wu, Zixin ; Tang, Yonglin ; Yu, Dongyan ; Luo, Haiyan ; Liu, Qirui ; Zhang, Qinghua ; Qiu, Tian ; Huang, Huan ; Ning, Ziyang ; Ouyang, Chuying ; Gu, Lin ; Qiao, Yu ; Sun, Shi-Gang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a151t-cc5788895a59b834f496c3f38e19d46e4931bffb6851dac64064c9257a76a9d13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fang, Kai</creatorcontrib><creatorcontrib>Yin, Jianhua</creatorcontrib><creatorcontrib>Zeng, Guifan</creatorcontrib><creatorcontrib>Wu, Zixin</creatorcontrib><creatorcontrib>Tang, Yonglin</creatorcontrib><creatorcontrib>Yu, Dongyan</creatorcontrib><creatorcontrib>Luo, Haiyan</creatorcontrib><creatorcontrib>Liu, Qirui</creatorcontrib><creatorcontrib>Zhang, Qinghua</creatorcontrib><creatorcontrib>Qiu, Tian</creatorcontrib><creatorcontrib>Huang, Huan</creatorcontrib><creatorcontrib>Ning, Ziyang</creatorcontrib><creatorcontrib>Ouyang, Chuying</creatorcontrib><creatorcontrib>Gu, Lin</creatorcontrib><creatorcontrib>Qiao, Yu</creatorcontrib><creatorcontrib>Sun, Shi-Gang</creatorcontrib><collection>MEDLINE - Academic</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fang, Kai</au><au>Yin, Jianhua</au><au>Zeng, Guifan</au><au>Wu, Zixin</au><au>Tang, Yonglin</au><au>Yu, Dongyan</au><au>Luo, Haiyan</au><au>Liu, Qirui</au><au>Zhang, Qinghua</au><au>Qiu, Tian</au><au>Huang, Huan</au><au>Ning, Ziyang</au><au>Ouyang, Chuying</au><au>Gu, Lin</au><au>Qiao, Yu</au><au>Sun, Shi-Gang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Elucidating the Structural Evolution of O3-type NaNi1/3Fe1/3Mn1/3O2: A Prototype Cathode for Na-Ion Battery</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2024-11-20</date><risdate>2024</risdate><volume>146</volume><issue>46</issue><spage>31860</spage><epage>31872</epage><pages>31860-31872</pages><issn>0002-7863</issn><issn>1520-5126</issn><eissn>1520-5126</eissn><abstract>Extending the depth-of-charge (DoC) of the layered oxide cathode presents an essential route to improve the competitiveness of the Na-ion battery versus the commercialized LiFePO4-based Li-ion battery (0.8 CNY/Wh). However, the DoC-dependent boundary between detrimental/irreversible structural distortion and neutral/reversible structure interconversion cannot be clearly distinguished, which is attributed to the ambiguous recognition of correlation among the complex phase transition, local covalent environment evolution, and charge compensation. Herein, to bridge the above gap, we employed O3-NaNi1/3Fe1/3Mn1/3O2 as the prototype cathode and extended the target DoC from typical Na0.4 (∼125 mAh/g, 4.0 V cutoff) to Na0.2 (∼180 mAh/g, 4.3 V cutoff). Regarding phase transition and charge compensation, the O3-to-P3 phase transition occurs before moderate Na0.4-DoC (Fe/Mn redox silence, Ni oxidation dominated), while further desodiation (start from Na0.4) induces a P-to-O slab transition, resulting in the coexistence of P3 and OP2 phases and subsequent OP2/O3 intergrowth phases at higher DoC (Na0.2), upon which the Fe3+-to-Fe4+ oxidation is activated for capacity contribution. The local covalent environment presents severer deviation at high DoC (merely 0.2 mol desodiation from Na0.4 to Na0.2), which can be attributed not only to the slab gliding induced by the P-to-O slab transition but also to the further aggravation caused by the Jahn–Teller distortion of the FeO6 octahedron. Such irreversible distortion of the local covalent environment would be accumulated and evolved/deteriorated into structural degradation during long-term cycling. Furthermore, the rate-dependent artificial regulation of redox process has been demonstrated and the doping strategy toward structural stabilization has been proposed.</abstract><pub>American Chemical Society</pub><doi>10.1021/jacs.4c11049</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-8891-1682</orcidid><orcidid>https://orcid.org/0000-0002-2191-3875</orcidid><orcidid>https://orcid.org/0000-0003-2327-4090</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0002-7863
ispartof Journal of the American Chemical Society, 2024-11, Vol.146 (46), p.31860-31872
issn 0002-7863
1520-5126
1520-5126
language eng
recordid cdi_proquest_miscellaneous_3128325474
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
title Elucidating the Structural Evolution of O3-type NaNi1/3Fe1/3Mn1/3O2: A Prototype Cathode for Na-Ion Battery
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T11%3A45%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_acs_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Elucidating%20the%20Structural%20Evolution%20of%20O3-type%20NaNi1/3Fe1/3Mn1/3O2:%20A%20Prototype%20Cathode%20for%20Na-Ion%20Battery&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Fang,%20Kai&rft.date=2024-11-20&rft.volume=146&rft.issue=46&rft.spage=31860&rft.epage=31872&rft.pages=31860-31872&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.4c11049&rft_dat=%3Cproquest_acs_j%3E3128325474%3C/proquest_acs_j%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a151t-cc5788895a59b834f496c3f38e19d46e4931bffb6851dac64064c9257a76a9d13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3128325474&rft_id=info:pmid/&rfr_iscdi=true