Loading…

Interaction and Diffusion Mechanism of Moisture in Power Capacitor Insulating Oil Based on Molecular Simulation

Characterized by its exceptional electrical, physical, and chemical properties, 1-phenyl-1-xylylethane (PXE) insulating oil finds extensive application in the realm of power capacitor insulation. In this study, molecular simulation is employed to investigate the reactivity of PXE insulating oil mole...

Full description

Saved in:
Bibliographic Details
Published in:Materials 2024-10, Vol.17 (21), p.5180
Main Authors: Wei, Changyou, Pang, Zhiyi, Qin, Rui, Huang, Jiwen, Li, Yi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c279t-2d51973049f4551844db34a13b52739789328fabd9ba02313a8c70bddbba8dbd3
container_end_page
container_issue 21
container_start_page 5180
container_title Materials
container_volume 17
creator Wei, Changyou
Pang, Zhiyi
Qin, Rui
Huang, Jiwen
Li, Yi
description Characterized by its exceptional electrical, physical, and chemical properties, 1-phenyl-1-xylylethane (PXE) insulating oil finds extensive application in the realm of power capacitor insulation. In this study, molecular simulation is employed to investigate the reactivity of PXE insulating oil molecules and the impact of temperature on water diffusion behavior in PXE insulating oil, as well as its solubility. The findings demonstrate a higher propensity for hydrogen atoms in nucleophilic and electrophilic positions within PXE insulating oil molecules to interact with water molecules. The inclusion of a temperature field enhances the Brownian motion of water molecules and improves their diffusion ability within the oil. Furthermore, the temperature field diminishes the interaction force between water molecules and the oil medium. Under the influence of this temperature field, there is an increase in the free volume fraction of PXE insulating oil, leading to a weakening effect on hydrogen bonds between oxygen and hydrogen atoms within PXE insulating oil. Additionally, with increasing temperature, there is an elevation in moisture solubility within insulating oil, resulting in a transition from a suspended state to a dissolved state.
doi_str_mv 10.3390/ma17215180
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_3128740764</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A815346373</galeid><sourcerecordid>A815346373</sourcerecordid><originalsourceid>FETCH-LOGICAL-c279t-2d51973049f4551844db34a13b52739789328fabd9ba02313a8c70bddbba8dbd3</originalsourceid><addsrcrecordid>eNpdkV1rFTEQhoMottTe-AMk4I0IpyaZZJNc1uPXgZYK6vWSz5qymxyTXcR_b46nfuDkYpKZZ4aXvAg9peQCQJNXs6GSUUEVeYBOqdbDhmrOH_5zP0Hnrd2RHgBUMf0YnYAWVHIhTlHZ5SVU45ZUMjbZ4zcpxrUdXtfBfTU5tRmXiK9LastaA04ZfyzfQ8VbszcuLaXiXW7rZJaUb_FNmvBr04LHhwVlCq53Kv6U5l9EyU_Qo2imFs7v8xn68u7t5-2HzdXN-9328mrjmNTLhnlBtQTCdewyqeLcW-CGghVMgpZKA1PRWK-tIQwoGOUksd5ba5S3Hs7Qi-PefS3f1tCWcU7NhWkyOZS1jUCZkpzIgXf0-X_oXVlr7uoO1ECYkGLo1MWRujVTGFOOZenf1o8Pc3Ilh5h6_VJRAXwACX3g5XHA1dJaDXHc1zSb-mOkZDxYN_61rsPP7jWsdg7-D_rbKPgJnHWShA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3126025756</pqid></control><display><type>article</type><title>Interaction and Diffusion Mechanism of Moisture in Power Capacitor Insulating Oil Based on Molecular Simulation</title><source>Publicly Available Content Database</source><source>Full-Text Journals in Chemistry (Open access)</source><source>PubMed Central</source><creator>Wei, Changyou ; Pang, Zhiyi ; Qin, Rui ; Huang, Jiwen ; Li, Yi</creator><creatorcontrib>Wei, Changyou ; Pang, Zhiyi ; Qin, Rui ; Huang, Jiwen ; Li, Yi</creatorcontrib><description>Characterized by its exceptional electrical, physical, and chemical properties, 1-phenyl-1-xylylethane (PXE) insulating oil finds extensive application in the realm of power capacitor insulation. In this study, molecular simulation is employed to investigate the reactivity of PXE insulating oil molecules and the impact of temperature on water diffusion behavior in PXE insulating oil, as well as its solubility. The findings demonstrate a higher propensity for hydrogen atoms in nucleophilic and electrophilic positions within PXE insulating oil molecules to interact with water molecules. The inclusion of a temperature field enhances the Brownian motion of water molecules and improves their diffusion ability within the oil. Furthermore, the temperature field diminishes the interaction force between water molecules and the oil medium. Under the influence of this temperature field, there is an increase in the free volume fraction of PXE insulating oil, leading to a weakening effect on hydrogen bonds between oxygen and hydrogen atoms within PXE insulating oil. Additionally, with increasing temperature, there is an elevation in moisture solubility within insulating oil, resulting in a transition from a suspended state to a dissolved state.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma17215180</identifier><identifier>PMID: 39517455</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Bonding strength ; Capacitors ; Chemical bonds ; Chemical properties ; Efficiency ; Electronic components industry ; Hydrogen ; Hydrogen atoms ; Hydrogen bonds ; Investigations ; Mineral oils ; Moisture ; Optimization ; Simulation ; Solubility ; Temperature distribution ; Water ; Water chemistry</subject><ispartof>Materials, 2024-10, Vol.17 (21), p.5180</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c279t-2d51973049f4551844db34a13b52739789328fabd9ba02313a8c70bddbba8dbd3</cites><orcidid>0000-0001-5557-1773</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3126025756/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3126025756?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25732,27903,27904,36991,36992,44569,74873</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39517455$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wei, Changyou</creatorcontrib><creatorcontrib>Pang, Zhiyi</creatorcontrib><creatorcontrib>Qin, Rui</creatorcontrib><creatorcontrib>Huang, Jiwen</creatorcontrib><creatorcontrib>Li, Yi</creatorcontrib><title>Interaction and Diffusion Mechanism of Moisture in Power Capacitor Insulating Oil Based on Molecular Simulation</title><title>Materials</title><addtitle>Materials (Basel)</addtitle><description>Characterized by its exceptional electrical, physical, and chemical properties, 1-phenyl-1-xylylethane (PXE) insulating oil finds extensive application in the realm of power capacitor insulation. In this study, molecular simulation is employed to investigate the reactivity of PXE insulating oil molecules and the impact of temperature on water diffusion behavior in PXE insulating oil, as well as its solubility. The findings demonstrate a higher propensity for hydrogen atoms in nucleophilic and electrophilic positions within PXE insulating oil molecules to interact with water molecules. The inclusion of a temperature field enhances the Brownian motion of water molecules and improves their diffusion ability within the oil. Furthermore, the temperature field diminishes the interaction force between water molecules and the oil medium. Under the influence of this temperature field, there is an increase in the free volume fraction of PXE insulating oil, leading to a weakening effect on hydrogen bonds between oxygen and hydrogen atoms within PXE insulating oil. Additionally, with increasing temperature, there is an elevation in moisture solubility within insulating oil, resulting in a transition from a suspended state to a dissolved state.</description><subject>Bonding strength</subject><subject>Capacitors</subject><subject>Chemical bonds</subject><subject>Chemical properties</subject><subject>Efficiency</subject><subject>Electronic components industry</subject><subject>Hydrogen</subject><subject>Hydrogen atoms</subject><subject>Hydrogen bonds</subject><subject>Investigations</subject><subject>Mineral oils</subject><subject>Moisture</subject><subject>Optimization</subject><subject>Simulation</subject><subject>Solubility</subject><subject>Temperature distribution</subject><subject>Water</subject><subject>Water chemistry</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpdkV1rFTEQhoMottTe-AMk4I0IpyaZZJNc1uPXgZYK6vWSz5qymxyTXcR_b46nfuDkYpKZZ4aXvAg9peQCQJNXs6GSUUEVeYBOqdbDhmrOH_5zP0Hnrd2RHgBUMf0YnYAWVHIhTlHZ5SVU45ZUMjbZ4zcpxrUdXtfBfTU5tRmXiK9LastaA04ZfyzfQ8VbszcuLaXiXW7rZJaUb_FNmvBr04LHhwVlCq53Kv6U5l9EyU_Qo2imFs7v8xn68u7t5-2HzdXN-9328mrjmNTLhnlBtQTCdewyqeLcW-CGghVMgpZKA1PRWK-tIQwoGOUksd5ba5S3Hs7Qi-PefS3f1tCWcU7NhWkyOZS1jUCZkpzIgXf0-X_oXVlr7uoO1ECYkGLo1MWRujVTGFOOZenf1o8Pc3Ilh5h6_VJRAXwACX3g5XHA1dJaDXHc1zSb-mOkZDxYN_61rsPP7jWsdg7-D_rbKPgJnHWShA</recordid><startdate>20241024</startdate><enddate>20241024</enddate><creator>Wei, Changyou</creator><creator>Pang, Zhiyi</creator><creator>Qin, Rui</creator><creator>Huang, Jiwen</creator><creator>Li, Yi</creator><general>MDPI AG</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5557-1773</orcidid></search><sort><creationdate>20241024</creationdate><title>Interaction and Diffusion Mechanism of Moisture in Power Capacitor Insulating Oil Based on Molecular Simulation</title><author>Wei, Changyou ; Pang, Zhiyi ; Qin, Rui ; Huang, Jiwen ; Li, Yi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c279t-2d51973049f4551844db34a13b52739789328fabd9ba02313a8c70bddbba8dbd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Bonding strength</topic><topic>Capacitors</topic><topic>Chemical bonds</topic><topic>Chemical properties</topic><topic>Efficiency</topic><topic>Electronic components industry</topic><topic>Hydrogen</topic><topic>Hydrogen atoms</topic><topic>Hydrogen bonds</topic><topic>Investigations</topic><topic>Mineral oils</topic><topic>Moisture</topic><topic>Optimization</topic><topic>Simulation</topic><topic>Solubility</topic><topic>Temperature distribution</topic><topic>Water</topic><topic>Water chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wei, Changyou</creatorcontrib><creatorcontrib>Pang, Zhiyi</creatorcontrib><creatorcontrib>Qin, Rui</creatorcontrib><creatorcontrib>Huang, Jiwen</creatorcontrib><creatorcontrib>Li, Yi</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wei, Changyou</au><au>Pang, Zhiyi</au><au>Qin, Rui</au><au>Huang, Jiwen</au><au>Li, Yi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interaction and Diffusion Mechanism of Moisture in Power Capacitor Insulating Oil Based on Molecular Simulation</atitle><jtitle>Materials</jtitle><addtitle>Materials (Basel)</addtitle><date>2024-10-24</date><risdate>2024</risdate><volume>17</volume><issue>21</issue><spage>5180</spage><pages>5180-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>Characterized by its exceptional electrical, physical, and chemical properties, 1-phenyl-1-xylylethane (PXE) insulating oil finds extensive application in the realm of power capacitor insulation. In this study, molecular simulation is employed to investigate the reactivity of PXE insulating oil molecules and the impact of temperature on water diffusion behavior in PXE insulating oil, as well as its solubility. The findings demonstrate a higher propensity for hydrogen atoms in nucleophilic and electrophilic positions within PXE insulating oil molecules to interact with water molecules. The inclusion of a temperature field enhances the Brownian motion of water molecules and improves their diffusion ability within the oil. Furthermore, the temperature field diminishes the interaction force between water molecules and the oil medium. Under the influence of this temperature field, there is an increase in the free volume fraction of PXE insulating oil, leading to a weakening effect on hydrogen bonds between oxygen and hydrogen atoms within PXE insulating oil. Additionally, with increasing temperature, there is an elevation in moisture solubility within insulating oil, resulting in a transition from a suspended state to a dissolved state.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>39517455</pmid><doi>10.3390/ma17215180</doi><orcidid>https://orcid.org/0000-0001-5557-1773</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1996-1944
ispartof Materials, 2024-10, Vol.17 (21), p.5180
issn 1996-1944
1996-1944
language eng
recordid cdi_proquest_miscellaneous_3128740764
source Publicly Available Content Database; Full-Text Journals in Chemistry (Open access); PubMed Central
subjects Bonding strength
Capacitors
Chemical bonds
Chemical properties
Efficiency
Electronic components industry
Hydrogen
Hydrogen atoms
Hydrogen bonds
Investigations
Mineral oils
Moisture
Optimization
Simulation
Solubility
Temperature distribution
Water
Water chemistry
title Interaction and Diffusion Mechanism of Moisture in Power Capacitor Insulating Oil Based on Molecular Simulation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T16%3A57%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interaction%20and%20Diffusion%20Mechanism%20of%20Moisture%20in%20Power%20Capacitor%20Insulating%20Oil%20Based%20on%20Molecular%20Simulation&rft.jtitle=Materials&rft.au=Wei,%20Changyou&rft.date=2024-10-24&rft.volume=17&rft.issue=21&rft.spage=5180&rft.pages=5180-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma17215180&rft_dat=%3Cgale_proqu%3EA815346373%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c279t-2d51973049f4551844db34a13b52739789328fabd9ba02313a8c70bddbba8dbd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3126025756&rft_id=info:pmid/39517455&rft_galeid=A815346373&rfr_iscdi=true