Loading…

Mechanical Analysis of the Critical Conditions for Trapping and Detachment of Microscale Air Bubbles on the Pure Water Freezing Front

Icing is a widespread phase change phenomenon with implications for daily life and industrial production. Air bubbles form on the freezing front of pure water with dissolved air during the icing, which may affect the physical properties of ice. Controlling the behavior of air bubbles will be one met...

Full description

Saved in:
Bibliographic Details
Published in:Langmuir 2024-11, Vol.40 (47), p.25334-25343
Main Authors: Shao, Keke, Song, Mengjie, Zhang, Xuan, Xu, Chunwen, Wang, Yunfeng, Hu, Yanxin, Wang, Zilong
Format: Article
Language:English
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-a227t-7d1f86f4d3e8726dc8a080a24afc99820e3a1008487031495f586a2a2dc5be6d3
container_end_page 25343
container_issue 47
container_start_page 25334
container_title Langmuir
container_volume 40
creator Shao, Keke
Song, Mengjie
Zhang, Xuan
Xu, Chunwen
Wang, Yunfeng
Hu, Yanxin
Wang, Zilong
description Icing is a widespread phase change phenomenon with implications for daily life and industrial production. Air bubbles form on the freezing front of pure water with dissolved air during the icing, which may affect the physical properties of ice. Controlling the behavior of air bubbles will be one method to change the physical properties of ice. To analyze the critical conditions for trapping and detachment of microscale air bubbles on a pure water freezing front, a mathematical model describing the forces on air bubble is developed on the basis of the principle of force equilibrium. Results show that the average accuracy of the present model in predicting the average air bubble detachment radius is about 62%, which is 30% higher than the model with the best prediction accuracy in the literature. Buoyant, temperature gradients, and hydrodynamic forces push air bubbles to detach from the freezing fronts, while adhesion force and gravity impede their detachment. Temperature gradient and adhesion forces are the main factors affecting the detachment of air bubbles from freezing fronts. The temperature gradient has the greatest effect on the air bubble detachment radius, while the tilt angle and liquid density have a lesser effect. When the temperature gradient is increased from 1000 to 10 000 K/m, the air bubble detachment radius decreases by 37.78%. Studying the forces acting on the air bubbles on the pure water freezing front is an important reference for the production of special ice bodies, phase change cold storage, and de-icing technology.
doi_str_mv 10.1021/acs.langmuir.4c03815
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3128756964</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3128756964</sourcerecordid><originalsourceid>FETCH-LOGICAL-a227t-7d1f86f4d3e8726dc8a080a24afc99820e3a1008487031495f586a2a2dc5be6d3</originalsourceid><addsrcrecordid>eNp9kU9P3DAQxa2Kqmyh3wAhH7lk8b8kznFZ2IIEag-gHqNZZ8IaJfZiJ4fl3u9dh1049uSR_H5vNO8RcsbZnDPBL8HEeQfuuR9tmCvDpOb5FzLjuWBZrkV5RGasVDIrVSGPyfcYXxhjlVTVN3Isq1xoKfWM_H1AswFnDXR04aDbRRupb-mwQboMdnj_WHrXpNG7SFsf6GOA7da6Zwquodc4gNn06IYJe7Am-JgYpAsb6NW4XneYDN274e8xIP0DAwa6Cohvk8cqeDeckq8tdBF_HN4T8rS6eVzeZve_ft4tF_cZCFEOWdnwVhetaiTqUhSN0cA0A6GgNVWlBUMJnDGtdMkkV1Xe5roAAaIx-RqLRp6Qi73vNvjXEeNQ9zYa7FKO6MdYSy50mRdVoZJU7aXTQTFgW2-D7SHsas7qqYA6FVB_FFAfCkjY-WHDuO6x-YQ-Ek8CthdM-IsfQwo9_t_zHwQ-lmc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3128756964</pqid></control><display><type>article</type><title>Mechanical Analysis of the Critical Conditions for Trapping and Detachment of Microscale Air Bubbles on the Pure Water Freezing Front</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Shao, Keke ; Song, Mengjie ; Zhang, Xuan ; Xu, Chunwen ; Wang, Yunfeng ; Hu, Yanxin ; Wang, Zilong</creator><creatorcontrib>Shao, Keke ; Song, Mengjie ; Zhang, Xuan ; Xu, Chunwen ; Wang, Yunfeng ; Hu, Yanxin ; Wang, Zilong</creatorcontrib><description>Icing is a widespread phase change phenomenon with implications for daily life and industrial production. Air bubbles form on the freezing front of pure water with dissolved air during the icing, which may affect the physical properties of ice. Controlling the behavior of air bubbles will be one method to change the physical properties of ice. To analyze the critical conditions for trapping and detachment of microscale air bubbles on a pure water freezing front, a mathematical model describing the forces on air bubble is developed on the basis of the principle of force equilibrium. Results show that the average accuracy of the present model in predicting the average air bubble detachment radius is about 62%, which is 30% higher than the model with the best prediction accuracy in the literature. Buoyant, temperature gradients, and hydrodynamic forces push air bubbles to detach from the freezing fronts, while adhesion force and gravity impede their detachment. Temperature gradient and adhesion forces are the main factors affecting the detachment of air bubbles from freezing fronts. The temperature gradient has the greatest effect on the air bubble detachment radius, while the tilt angle and liquid density have a lesser effect. When the temperature gradient is increased from 1000 to 10 000 K/m, the air bubble detachment radius decreases by 37.78%. Studying the forces acting on the air bubbles on the pure water freezing front is an important reference for the production of special ice bodies, phase change cold storage, and de-icing technology.</description><identifier>ISSN: 0743-7463</identifier><identifier>ISSN: 1520-5827</identifier><identifier>EISSN: 1520-5827</identifier><identifier>DOI: 10.1021/acs.langmuir.4c03815</identifier><identifier>PMID: 39528338</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>Langmuir, 2024-11, Vol.40 (47), p.25334-25343</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a227t-7d1f86f4d3e8726dc8a080a24afc99820e3a1008487031495f586a2a2dc5be6d3</cites><orcidid>0000-0002-4999-7361 ; 0009-0000-4234-626X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39528338$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shao, Keke</creatorcontrib><creatorcontrib>Song, Mengjie</creatorcontrib><creatorcontrib>Zhang, Xuan</creatorcontrib><creatorcontrib>Xu, Chunwen</creatorcontrib><creatorcontrib>Wang, Yunfeng</creatorcontrib><creatorcontrib>Hu, Yanxin</creatorcontrib><creatorcontrib>Wang, Zilong</creatorcontrib><title>Mechanical Analysis of the Critical Conditions for Trapping and Detachment of Microscale Air Bubbles on the Pure Water Freezing Front</title><title>Langmuir</title><addtitle>Langmuir</addtitle><description>Icing is a widespread phase change phenomenon with implications for daily life and industrial production. Air bubbles form on the freezing front of pure water with dissolved air during the icing, which may affect the physical properties of ice. Controlling the behavior of air bubbles will be one method to change the physical properties of ice. To analyze the critical conditions for trapping and detachment of microscale air bubbles on a pure water freezing front, a mathematical model describing the forces on air bubble is developed on the basis of the principle of force equilibrium. Results show that the average accuracy of the present model in predicting the average air bubble detachment radius is about 62%, which is 30% higher than the model with the best prediction accuracy in the literature. Buoyant, temperature gradients, and hydrodynamic forces push air bubbles to detach from the freezing fronts, while adhesion force and gravity impede their detachment. Temperature gradient and adhesion forces are the main factors affecting the detachment of air bubbles from freezing fronts. The temperature gradient has the greatest effect on the air bubble detachment radius, while the tilt angle and liquid density have a lesser effect. When the temperature gradient is increased from 1000 to 10 000 K/m, the air bubble detachment radius decreases by 37.78%. Studying the forces acting on the air bubbles on the pure water freezing front is an important reference for the production of special ice bodies, phase change cold storage, and de-icing technology.</description><issn>0743-7463</issn><issn>1520-5827</issn><issn>1520-5827</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kU9P3DAQxa2Kqmyh3wAhH7lk8b8kznFZ2IIEag-gHqNZZ8IaJfZiJ4fl3u9dh1049uSR_H5vNO8RcsbZnDPBL8HEeQfuuR9tmCvDpOb5FzLjuWBZrkV5RGasVDIrVSGPyfcYXxhjlVTVN3Isq1xoKfWM_H1AswFnDXR04aDbRRupb-mwQboMdnj_WHrXpNG7SFsf6GOA7da6Zwquodc4gNn06IYJe7Am-JgYpAsb6NW4XneYDN274e8xIP0DAwa6Cohvk8cqeDeckq8tdBF_HN4T8rS6eVzeZve_ft4tF_cZCFEOWdnwVhetaiTqUhSN0cA0A6GgNVWlBUMJnDGtdMkkV1Xe5roAAaIx-RqLRp6Qi73vNvjXEeNQ9zYa7FKO6MdYSy50mRdVoZJU7aXTQTFgW2-D7SHsas7qqYA6FVB_FFAfCkjY-WHDuO6x-YQ-Ek8CthdM-IsfQwo9_t_zHwQ-lmc</recordid><startdate>20241126</startdate><enddate>20241126</enddate><creator>Shao, Keke</creator><creator>Song, Mengjie</creator><creator>Zhang, Xuan</creator><creator>Xu, Chunwen</creator><creator>Wang, Yunfeng</creator><creator>Hu, Yanxin</creator><creator>Wang, Zilong</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4999-7361</orcidid><orcidid>https://orcid.org/0009-0000-4234-626X</orcidid></search><sort><creationdate>20241126</creationdate><title>Mechanical Analysis of the Critical Conditions for Trapping and Detachment of Microscale Air Bubbles on the Pure Water Freezing Front</title><author>Shao, Keke ; Song, Mengjie ; Zhang, Xuan ; Xu, Chunwen ; Wang, Yunfeng ; Hu, Yanxin ; Wang, Zilong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a227t-7d1f86f4d3e8726dc8a080a24afc99820e3a1008487031495f586a2a2dc5be6d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shao, Keke</creatorcontrib><creatorcontrib>Song, Mengjie</creatorcontrib><creatorcontrib>Zhang, Xuan</creatorcontrib><creatorcontrib>Xu, Chunwen</creatorcontrib><creatorcontrib>Wang, Yunfeng</creatorcontrib><creatorcontrib>Hu, Yanxin</creatorcontrib><creatorcontrib>Wang, Zilong</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Langmuir</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shao, Keke</au><au>Song, Mengjie</au><au>Zhang, Xuan</au><au>Xu, Chunwen</au><au>Wang, Yunfeng</au><au>Hu, Yanxin</au><au>Wang, Zilong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanical Analysis of the Critical Conditions for Trapping and Detachment of Microscale Air Bubbles on the Pure Water Freezing Front</atitle><jtitle>Langmuir</jtitle><addtitle>Langmuir</addtitle><date>2024-11-26</date><risdate>2024</risdate><volume>40</volume><issue>47</issue><spage>25334</spage><epage>25343</epage><pages>25334-25343</pages><issn>0743-7463</issn><issn>1520-5827</issn><eissn>1520-5827</eissn><abstract>Icing is a widespread phase change phenomenon with implications for daily life and industrial production. Air bubbles form on the freezing front of pure water with dissolved air during the icing, which may affect the physical properties of ice. Controlling the behavior of air bubbles will be one method to change the physical properties of ice. To analyze the critical conditions for trapping and detachment of microscale air bubbles on a pure water freezing front, a mathematical model describing the forces on air bubble is developed on the basis of the principle of force equilibrium. Results show that the average accuracy of the present model in predicting the average air bubble detachment radius is about 62%, which is 30% higher than the model with the best prediction accuracy in the literature. Buoyant, temperature gradients, and hydrodynamic forces push air bubbles to detach from the freezing fronts, while adhesion force and gravity impede their detachment. Temperature gradient and adhesion forces are the main factors affecting the detachment of air bubbles from freezing fronts. The temperature gradient has the greatest effect on the air bubble detachment radius, while the tilt angle and liquid density have a lesser effect. When the temperature gradient is increased from 1000 to 10 000 K/m, the air bubble detachment radius decreases by 37.78%. Studying the forces acting on the air bubbles on the pure water freezing front is an important reference for the production of special ice bodies, phase change cold storage, and de-icing technology.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>39528338</pmid><doi>10.1021/acs.langmuir.4c03815</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-4999-7361</orcidid><orcidid>https://orcid.org/0009-0000-4234-626X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0743-7463
ispartof Langmuir, 2024-11, Vol.40 (47), p.25334-25343
issn 0743-7463
1520-5827
1520-5827
language eng
recordid cdi_proquest_miscellaneous_3128756964
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
title Mechanical Analysis of the Critical Conditions for Trapping and Detachment of Microscale Air Bubbles on the Pure Water Freezing Front
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T12%3A04%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanical%20Analysis%20of%20the%20Critical%20Conditions%20for%20Trapping%20and%20Detachment%20of%20Microscale%20Air%20Bubbles%20on%20the%20Pure%20Water%20Freezing%20Front&rft.jtitle=Langmuir&rft.au=Shao,%20Keke&rft.date=2024-11-26&rft.volume=40&rft.issue=47&rft.spage=25334&rft.epage=25343&rft.pages=25334-25343&rft.issn=0743-7463&rft.eissn=1520-5827&rft_id=info:doi/10.1021/acs.langmuir.4c03815&rft_dat=%3Cproquest_cross%3E3128756964%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a227t-7d1f86f4d3e8726dc8a080a24afc99820e3a1008487031495f586a2a2dc5be6d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3128756964&rft_id=info:pmid/39528338&rfr_iscdi=true