Loading…

Cryptic diversity patterns of subterranean estuaries

Subterranean estuaries are coastal ecosystems characterized by vertically stratified groundwater. The biota within these ecosystems is relatively understudied due to the inherent difficulty of accessing such extreme environments. The fauna inhabiting these ecosystems is considered vulnerable to exti...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the Royal Society. B, Biological sciences Biological sciences, 2024-11, Vol.291 (2034), p.20241483
Main Authors: Calderón-Gutiérrez, Fernando, Labonté, Jessica M, Gonzalez, Brett C, Iliffe, Thomas M, Mejía-Ortíz, Luis M, Borda, Elizabeth
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Subterranean estuaries are coastal ecosystems characterized by vertically stratified groundwater. The biota within these ecosystems is relatively understudied due to the inherent difficulty of accessing such extreme environments. The fauna inhabiting these ecosystems is considered vulnerable to extinction, and the presence of cryptic species has major implications for research and conservation efforts. Most species lack molecular data; however, the evaluation of genetic data for some taxa has revealed that undocumented species are common. This study employs molecular species delimitation methods and DNA barcoding through the analysis of publicly and newly generated sequences, including individuals from type localities and non-crustacean phyla; the latter are typically overlooked in biodiversity assessments of subterranean estuaries. We analysed 376 cytochrome c oxidase subunit I (COI) gene sequences and 154 16S rRNA gene sequences. The COI sequences represented 32% of previously described species and 50% of stygobiont species from the Yucatan Peninsula and Cozumel Island, while sequences of the 16S rRNA represented 14% of described species and 22% of stygobionts. Our results revealed cryptic genetic lineages and taxonomic misidentification of species. As several species from these ecosystems are recognized as endangered, the use of molecular approaches will improve biodiversity estimates and highlight overlooked cryptic lineages in need of evaluation of conservation status.
ISSN:0962-8452
1471-2954
1471-2954
DOI:10.1098/rspb.2024.1483