Loading…

ACSL3 is a promising therapeutic target for alleviating anxiety and depression in Alzheimer's disease

Alzheimer's disease (AD), the leading cause of dementia, affects over 55 million people worldwide and is often accompanied by depression and anxiety. Both significantly impact patients' quality of life and impose substantial societal and economic burdens on healthcare systems. Identifying...

Full description

Saved in:
Bibliographic Details
Published in:GeroScience 2024-11
Main Authors: Wu, Celeste Yin-Chieh, Zhang, Yulan, Howard, Peyton, Huang, Fang, Lee, Reggie Hui-Chao
Format: Article
Language:English
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Alzheimer's disease (AD), the leading cause of dementia, affects over 55 million people worldwide and is often accompanied by depression and anxiety. Both significantly impact patients' quality of life and impose substantial societal and economic burdens on healthcare systems. Identifying the complex regulatory mechanisms that contribute to the psychological and emotional deficits in AD will provide promising therapeutic targets. Biosynthesis of omega-3 (ω3) and omega-6 fatty acids (ω6-FA) through long-chain acyl-CoA synthetases (ACSL) is crucial for cell function and survival. This is due to ω3/6-FA's imperative role in modulating the plasma membrane, energy production, and inflammation. While ACSL dysfunction is known to cause heart, liver, and kidney diseases, the role of ACSL in pathological conditions in the central nervous system (e.g., depression and anxiety) remains largely unexplored. The impact of ACSLs on AD-related depression and anxiety was investigated in a mouse model of Alzheimer's disease (3xTg-AD). ACSL3 levels were significantly reduced in the hippocampus of aged 3xTg-AD mice (via capillary-based immunoassay). This reduction in ACAL3 was closely associated with increased depression and anxiety-like behavior (via forced swim, tail suspension, elevated plus maze, and sucrose preference test). Upregulation of ACSL3 via adenovirus in aged 3xTg-AD mice led to increased protein levels of brain-derived neurotrophic factor (BDNF) and vascular endothelial growth factor C (VEGF-C) (via brain histology, capillary-based immunoassay), resulting in alleviation of depression and anxiety symptoms. The present study highlights a novel neuroprotective role of ACSL3 in the brain. Targeting ACSL3 will offer an innovative approach for treating AD-related depression and anxiety.
ISSN:2509-2723
2509-2723
DOI:10.1007/s11357-024-01424-5