Loading…
Mesalamine loaded ethyl cellulose nanoparticles: optimization andin vivoevaluation of antioxidant potential in ulcerative colitis
This study aimed to optimize mesalamine (MES)-nanoparticles (NPs) using Box Behnken Design and investigate itsin vivoantioxidant potential in colon drug targeting. The formulation was prepared using oil/water (O/W) emulsion solvent evaporation technique for time dependent colonic delivery. The optim...
Saved in:
Published in: | Biomedical materials (Bristol) 2024-11, Vol.20 (1) |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This study aimed to optimize mesalamine (MES)-nanoparticles (NPs) using Box Behnken Design and investigate itsin vivoantioxidant potential in colon drug targeting. The formulation was prepared using oil/water (O/W) emulsion solvent evaporation technique for time dependent colonic delivery. The optimal formulation with the following parameters composition was selected: polymer concentration (% w/w) (A) = 0.63, surfactant concentration (% w/w) (B) = 0.71, sonication duration (min) (C) = 6. The outcomes showed that ethyl cellulose (EC) NP containing MES has particles size of 142 ± 2.8 nm, zeta potential (ZP) of -24.8 ± 2.3 mV, % EE of 87.9 ± 1.6%, and PDI of 0.226 ± 0.15. Scanning electron microscopy revealed NPs has a uniform and spherical shape. Thein-vitrorelease data disclosed that the EC NPs containing MES showed bursts release of 52% ± 1.6% in simulated stomach media within 2 h, followed by a steady release of 93% ± 2.9% in simulated intestinal fluid that lasted for 48 h. The MES release from NP best match with the Korsmeyer-Peppas model (R2= 0.962) and it followed Fickian diffusion case I release mechanism. The formulation stability over six-months at 25 °C ± 2 °C with 65% ± 5% relative humidity, and 40 °C ± 2 °C with 75% ± 5% relative humidity showed no significant changes in colour, EE, particle sizes and ZP. As perin vivoresults, MES-NP effectively increased glutathione, SOD level and reduces the LPO level as compared to other treatment groups. The findings hold promise that the developed formulation can suitably give in ulcerative colitis.This study aimed to optimize mesalamine (MES)-nanoparticles (NPs) using Box Behnken Design and investigate itsin vivoantioxidant potential in colon drug targeting. The formulation was prepared using oil/water (O/W) emulsion solvent evaporation technique for time dependent colonic delivery. The optimal formulation with the following parameters composition was selected: polymer concentration (% w/w) (A) = 0.63, surfactant concentration (% w/w) (B) = 0.71, sonication duration (min) (C) = 6. The outcomes showed that ethyl cellulose (EC) NP containing MES has particles size of 142 ± 2.8 nm, zeta potential (ZP) of -24.8 ± 2.3 mV, % EE of 87.9 ± 1.6%, and PDI of 0.226 ± 0.15. Scanning electron microscopy revealed NPs has a uniform and spherical shape. Thein-vitrorelease data disclosed that the EC NPs containing MES showed bursts release of 52% ± 1.6% in simulated stomach media within 2 h, followed by a steady release of |
---|---|
ISSN: | 1748-605X 1748-605X |
DOI: | 10.1088/1748-605X/ad920e |