Loading…

Ultrasensitive Detection of Blood-Based Alzheimer’s Disease Biomarkers: A Comprehensive SERS-Immunoassay Platform Enhanced by Machine Learning

Accurate and early disease detection is crucial for improving patient care, but traditional diagnostic methods often fail to identify diseases in their early stages, leading to delayed treatment outcomes. Early diagnosis using blood derivatives as a source for biomarkers is particularly important fo...

Full description

Saved in:
Bibliographic Details
Published in:ACS chemical neuroscience 2024-12, Vol.15 (24), p.4390-4401
Main Authors: Resmi, A. N., Nazeer, Shaiju S., Dhushyandhun, M. E., Paul, Willi, Chacko, Binu P., Menon, Ramshekhar N., Jayasree, Ramapurath. S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-a227t-75777828f7c13ebe60baba5fe1079cd0d8d1c574a754446f9ba17680223975a13
container_end_page 4401
container_issue 24
container_start_page 4390
container_title ACS chemical neuroscience
container_volume 15
creator Resmi, A. N.
Nazeer, Shaiju S.
Dhushyandhun, M. E.
Paul, Willi
Chacko, Binu P.
Menon, Ramshekhar N.
Jayasree, Ramapurath. S.
description Accurate and early disease detection is crucial for improving patient care, but traditional diagnostic methods often fail to identify diseases in their early stages, leading to delayed treatment outcomes. Early diagnosis using blood derivatives as a source for biomarkers is particularly important for managing Alzheimer’s disease (AD). This study introduces a novel approach for the precise and ultrasensitive detection of multiple core AD biomarkers (Aβ40, Aβ42, p-tau, and t-tau) using surface-enhanced Raman spectroscopy (SERS) combined with machine-learning algorithms. Our method employs an antibody-immobilized aluminum SERS substrate, which offers high precision, sensitivity, and accuracy. The platform achieves an impressive detection limit in the attomolar (aM) range and spans a wide dynamic range from aM to micromolar (μM) concentrations. This ultrasensitive and specific SERS immunoassay platform shows promise for identifying mild cognitive impairment (MCI), a potential precursor to AD, from blood plasma. Machine-learning algorithms applied to the spectral data enhance the differentiation of MCI from AD and healthy controls, yielding excellent sensitivity and specificity. Our integrated SERS-machine-learning approach, with its interpretability, advances AD research and underscores the effectiveness of a cost-efficient, easy-to-prepare Al-SERS substrate for clinical AD detection.
doi_str_mv 10.1021/acschemneuro.4c00369
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3128819534</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3128819534</sourcerecordid><originalsourceid>FETCH-LOGICAL-a227t-75777828f7c13ebe60baba5fe1079cd0d8d1c574a754446f9ba17680223975a13</originalsourceid><addsrcrecordid>eNp9kc9O3DAQxq2qqMC2b1AhH7mE2vnnhNvusvyRFlF1yzmaOJPGENuLnVTanngErrweT1Kj3SJOPc1o_H0_a-Yj5CtnJ5zF_BtILzvUBkdnT1LJWJKXH8gBL9MiErxMPr7r98mh93eM5SUr8k9kPymzJMzZAXm67QcHHo1Xg_qN9AwHlIOyhtqWznprm2gWnhs67f90qDS6l8dnT8-UxzCmM2U1uHt0_pRO6dzqtcPuFRZQq8WPVXSl9WgseA8b-r2HobVO04XpwMgArTf0GmSnDNIlgjPK_PpM9lroPX7Z1Qm5PV_8nF9Gy5uLq_l0GUEciyESmRCiiItWSJ5gjTmroYasRc5EKRvWFA2XmUhBZGma5m1ZAxd5weI4KUUGPJmQ4y137ezDiH6otPIS-x4M2tFXCY-Lgoc7pUGabqXSWe8dttXaqbD2puKses2iep9Ftcsi2I52P4y1xubN9O_4QcC2gmCv7uzoTFj4_8y_PWicKA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3128819534</pqid></control><display><type>article</type><title>Ultrasensitive Detection of Blood-Based Alzheimer’s Disease Biomarkers: A Comprehensive SERS-Immunoassay Platform Enhanced by Machine Learning</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Resmi, A. N. ; Nazeer, Shaiju S. ; Dhushyandhun, M. E. ; Paul, Willi ; Chacko, Binu P. ; Menon, Ramshekhar N. ; Jayasree, Ramapurath. S.</creator><creatorcontrib>Resmi, A. N. ; Nazeer, Shaiju S. ; Dhushyandhun, M. E. ; Paul, Willi ; Chacko, Binu P. ; Menon, Ramshekhar N. ; Jayasree, Ramapurath. S.</creatorcontrib><description>Accurate and early disease detection is crucial for improving patient care, but traditional diagnostic methods often fail to identify diseases in their early stages, leading to delayed treatment outcomes. Early diagnosis using blood derivatives as a source for biomarkers is particularly important for managing Alzheimer’s disease (AD). This study introduces a novel approach for the precise and ultrasensitive detection of multiple core AD biomarkers (Aβ40, Aβ42, p-tau, and t-tau) using surface-enhanced Raman spectroscopy (SERS) combined with machine-learning algorithms. Our method employs an antibody-immobilized aluminum SERS substrate, which offers high precision, sensitivity, and accuracy. The platform achieves an impressive detection limit in the attomolar (aM) range and spans a wide dynamic range from aM to micromolar (μM) concentrations. This ultrasensitive and specific SERS immunoassay platform shows promise for identifying mild cognitive impairment (MCI), a potential precursor to AD, from blood plasma. Machine-learning algorithms applied to the spectral data enhance the differentiation of MCI from AD and healthy controls, yielding excellent sensitivity and specificity. Our integrated SERS-machine-learning approach, with its interpretability, advances AD research and underscores the effectiveness of a cost-efficient, easy-to-prepare Al-SERS substrate for clinical AD detection.</description><identifier>ISSN: 1948-7193</identifier><identifier>EISSN: 1948-7193</identifier><identifier>DOI: 10.1021/acschemneuro.4c00369</identifier><identifier>PMID: 39537190</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Aged ; Alzheimer Disease - blood ; Alzheimer Disease - diagnosis ; Amyloid beta-Peptides - analysis ; Amyloid beta-Peptides - blood ; Biomarkers - blood ; Cognitive Dysfunction - blood ; Cognitive Dysfunction - diagnosis ; Female ; Humans ; Immunoassay - methods ; Machine Learning ; Male ; Spectrum Analysis, Raman - methods ; tau Proteins - analysis ; tau Proteins - blood</subject><ispartof>ACS chemical neuroscience, 2024-12, Vol.15 (24), p.4390-4401</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a227t-75777828f7c13ebe60baba5fe1079cd0d8d1c574a754446f9ba17680223975a13</cites><orcidid>0000-0001-6810-9879 ; 0000-0002-8409-1426</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39537190$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Resmi, A. N.</creatorcontrib><creatorcontrib>Nazeer, Shaiju S.</creatorcontrib><creatorcontrib>Dhushyandhun, M. E.</creatorcontrib><creatorcontrib>Paul, Willi</creatorcontrib><creatorcontrib>Chacko, Binu P.</creatorcontrib><creatorcontrib>Menon, Ramshekhar N.</creatorcontrib><creatorcontrib>Jayasree, Ramapurath. S.</creatorcontrib><title>Ultrasensitive Detection of Blood-Based Alzheimer’s Disease Biomarkers: A Comprehensive SERS-Immunoassay Platform Enhanced by Machine Learning</title><title>ACS chemical neuroscience</title><addtitle>ACS Chem. Neurosci</addtitle><description>Accurate and early disease detection is crucial for improving patient care, but traditional diagnostic methods often fail to identify diseases in their early stages, leading to delayed treatment outcomes. Early diagnosis using blood derivatives as a source for biomarkers is particularly important for managing Alzheimer’s disease (AD). This study introduces a novel approach for the precise and ultrasensitive detection of multiple core AD biomarkers (Aβ40, Aβ42, p-tau, and t-tau) using surface-enhanced Raman spectroscopy (SERS) combined with machine-learning algorithms. Our method employs an antibody-immobilized aluminum SERS substrate, which offers high precision, sensitivity, and accuracy. The platform achieves an impressive detection limit in the attomolar (aM) range and spans a wide dynamic range from aM to micromolar (μM) concentrations. This ultrasensitive and specific SERS immunoassay platform shows promise for identifying mild cognitive impairment (MCI), a potential precursor to AD, from blood plasma. Machine-learning algorithms applied to the spectral data enhance the differentiation of MCI from AD and healthy controls, yielding excellent sensitivity and specificity. Our integrated SERS-machine-learning approach, with its interpretability, advances AD research and underscores the effectiveness of a cost-efficient, easy-to-prepare Al-SERS substrate for clinical AD detection.</description><subject>Aged</subject><subject>Alzheimer Disease - blood</subject><subject>Alzheimer Disease - diagnosis</subject><subject>Amyloid beta-Peptides - analysis</subject><subject>Amyloid beta-Peptides - blood</subject><subject>Biomarkers - blood</subject><subject>Cognitive Dysfunction - blood</subject><subject>Cognitive Dysfunction - diagnosis</subject><subject>Female</subject><subject>Humans</subject><subject>Immunoassay - methods</subject><subject>Machine Learning</subject><subject>Male</subject><subject>Spectrum Analysis, Raman - methods</subject><subject>tau Proteins - analysis</subject><subject>tau Proteins - blood</subject><issn>1948-7193</issn><issn>1948-7193</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kc9O3DAQxq2qqMC2b1AhH7mE2vnnhNvusvyRFlF1yzmaOJPGENuLnVTanngErrweT1Kj3SJOPc1o_H0_a-Yj5CtnJ5zF_BtILzvUBkdnT1LJWJKXH8gBL9MiErxMPr7r98mh93eM5SUr8k9kPymzJMzZAXm67QcHHo1Xg_qN9AwHlIOyhtqWznprm2gWnhs67f90qDS6l8dnT8-UxzCmM2U1uHt0_pRO6dzqtcPuFRZQq8WPVXSl9WgseA8b-r2HobVO04XpwMgArTf0GmSnDNIlgjPK_PpM9lroPX7Z1Qm5PV_8nF9Gy5uLq_l0GUEciyESmRCiiItWSJ5gjTmroYasRc5EKRvWFA2XmUhBZGma5m1ZAxd5weI4KUUGPJmQ4y137ezDiH6otPIS-x4M2tFXCY-Lgoc7pUGabqXSWe8dttXaqbD2puKses2iep9Ftcsi2I52P4y1xubN9O_4QcC2gmCv7uzoTFj4_8y_PWicKA</recordid><startdate>20241218</startdate><enddate>20241218</enddate><creator>Resmi, A. N.</creator><creator>Nazeer, Shaiju S.</creator><creator>Dhushyandhun, M. E.</creator><creator>Paul, Willi</creator><creator>Chacko, Binu P.</creator><creator>Menon, Ramshekhar N.</creator><creator>Jayasree, Ramapurath. S.</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6810-9879</orcidid><orcidid>https://orcid.org/0000-0002-8409-1426</orcidid></search><sort><creationdate>20241218</creationdate><title>Ultrasensitive Detection of Blood-Based Alzheimer’s Disease Biomarkers: A Comprehensive SERS-Immunoassay Platform Enhanced by Machine Learning</title><author>Resmi, A. N. ; Nazeer, Shaiju S. ; Dhushyandhun, M. E. ; Paul, Willi ; Chacko, Binu P. ; Menon, Ramshekhar N. ; Jayasree, Ramapurath. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a227t-75777828f7c13ebe60baba5fe1079cd0d8d1c574a754446f9ba17680223975a13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Aged</topic><topic>Alzheimer Disease - blood</topic><topic>Alzheimer Disease - diagnosis</topic><topic>Amyloid beta-Peptides - analysis</topic><topic>Amyloid beta-Peptides - blood</topic><topic>Biomarkers - blood</topic><topic>Cognitive Dysfunction - blood</topic><topic>Cognitive Dysfunction - diagnosis</topic><topic>Female</topic><topic>Humans</topic><topic>Immunoassay - methods</topic><topic>Machine Learning</topic><topic>Male</topic><topic>Spectrum Analysis, Raman - methods</topic><topic>tau Proteins - analysis</topic><topic>tau Proteins - blood</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Resmi, A. N.</creatorcontrib><creatorcontrib>Nazeer, Shaiju S.</creatorcontrib><creatorcontrib>Dhushyandhun, M. E.</creatorcontrib><creatorcontrib>Paul, Willi</creatorcontrib><creatorcontrib>Chacko, Binu P.</creatorcontrib><creatorcontrib>Menon, Ramshekhar N.</creatorcontrib><creatorcontrib>Jayasree, Ramapurath. S.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS chemical neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Resmi, A. N.</au><au>Nazeer, Shaiju S.</au><au>Dhushyandhun, M. E.</au><au>Paul, Willi</au><au>Chacko, Binu P.</au><au>Menon, Ramshekhar N.</au><au>Jayasree, Ramapurath. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultrasensitive Detection of Blood-Based Alzheimer’s Disease Biomarkers: A Comprehensive SERS-Immunoassay Platform Enhanced by Machine Learning</atitle><jtitle>ACS chemical neuroscience</jtitle><addtitle>ACS Chem. Neurosci</addtitle><date>2024-12-18</date><risdate>2024</risdate><volume>15</volume><issue>24</issue><spage>4390</spage><epage>4401</epage><pages>4390-4401</pages><issn>1948-7193</issn><eissn>1948-7193</eissn><abstract>Accurate and early disease detection is crucial for improving patient care, but traditional diagnostic methods often fail to identify diseases in their early stages, leading to delayed treatment outcomes. Early diagnosis using blood derivatives as a source for biomarkers is particularly important for managing Alzheimer’s disease (AD). This study introduces a novel approach for the precise and ultrasensitive detection of multiple core AD biomarkers (Aβ40, Aβ42, p-tau, and t-tau) using surface-enhanced Raman spectroscopy (SERS) combined with machine-learning algorithms. Our method employs an antibody-immobilized aluminum SERS substrate, which offers high precision, sensitivity, and accuracy. The platform achieves an impressive detection limit in the attomolar (aM) range and spans a wide dynamic range from aM to micromolar (μM) concentrations. This ultrasensitive and specific SERS immunoassay platform shows promise for identifying mild cognitive impairment (MCI), a potential precursor to AD, from blood plasma. Machine-learning algorithms applied to the spectral data enhance the differentiation of MCI from AD and healthy controls, yielding excellent sensitivity and specificity. Our integrated SERS-machine-learning approach, with its interpretability, advances AD research and underscores the effectiveness of a cost-efficient, easy-to-prepare Al-SERS substrate for clinical AD detection.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>39537190</pmid><doi>10.1021/acschemneuro.4c00369</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-6810-9879</orcidid><orcidid>https://orcid.org/0000-0002-8409-1426</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1948-7193
ispartof ACS chemical neuroscience, 2024-12, Vol.15 (24), p.4390-4401
issn 1948-7193
1948-7193
language eng
recordid cdi_proquest_miscellaneous_3128819534
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Aged
Alzheimer Disease - blood
Alzheimer Disease - diagnosis
Amyloid beta-Peptides - analysis
Amyloid beta-Peptides - blood
Biomarkers - blood
Cognitive Dysfunction - blood
Cognitive Dysfunction - diagnosis
Female
Humans
Immunoassay - methods
Machine Learning
Male
Spectrum Analysis, Raman - methods
tau Proteins - analysis
tau Proteins - blood
title Ultrasensitive Detection of Blood-Based Alzheimer’s Disease Biomarkers: A Comprehensive SERS-Immunoassay Platform Enhanced by Machine Learning
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T11%3A08%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultrasensitive%20Detection%20of%20Blood-Based%20Alzheimer%E2%80%99s%20Disease%20Biomarkers:%20A%20Comprehensive%20SERS-Immunoassay%20Platform%20Enhanced%20by%20Machine%20Learning&rft.jtitle=ACS%20chemical%20neuroscience&rft.au=Resmi,%20A.%20N.&rft.date=2024-12-18&rft.volume=15&rft.issue=24&rft.spage=4390&rft.epage=4401&rft.pages=4390-4401&rft.issn=1948-7193&rft.eissn=1948-7193&rft_id=info:doi/10.1021/acschemneuro.4c00369&rft_dat=%3Cproquest_cross%3E3128819534%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a227t-75777828f7c13ebe60baba5fe1079cd0d8d1c574a754446f9ba17680223975a13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3128819534&rft_id=info:pmid/39537190&rfr_iscdi=true