Loading…

Modelling (1 0 0) hydrogen-induced platelets in silicon with a multi-scale molecular dynamics approach

We introduce a multiscale molecular dynamics (MD) approach to study the thermal evolution of (1 0 0) hydrogen-induced platelets (HIPs) in silicon. The HIPs are modeled by ∼10 nm long planar defects in a periodically repeated crystalline model system containing ∼25,000 silicon atoms. The initial defe...

Full description

Saved in:
Bibliographic Details
Published in:Physica. B, Condensed matter Condensed matter, 2007-12, Vol.401, p.16-20
Main Authors: Moras, G., Colombi Ciacchi, L., Csanyi, G., De Vita, A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c379t-97087547224ae1696633f97b08975e93a4e40232e8f50ae4338fb435d4805f753
cites cdi_FETCH-LOGICAL-c379t-97087547224ae1696633f97b08975e93a4e40232e8f50ae4338fb435d4805f753
container_end_page 20
container_issue
container_start_page 16
container_title Physica. B, Condensed matter
container_volume 401
creator Moras, G.
Colombi Ciacchi, L.
Csanyi, G.
De Vita, A.
description We introduce a multiscale molecular dynamics (MD) approach to study the thermal evolution of (1 0 0) hydrogen-induced platelets (HIPs) in silicon. The HIPs are modeled by ∼10 nm long planar defects in a periodically repeated crystalline model system containing ∼25,000 silicon atoms. The initial defect models are created either by cleavage of atomic planes or by planar assemblies of vacancies, and are stabilized by saturating the resulting surface dangling bonds with hydrogen atoms. The time evolution of the defects is studied by finite-temperature MD using the “Learn On The Fly” (LOTF) technique. This hybrid scheme allows us to perform accurate density-functional-tight-binding (DFTB) force calculations only on the chemically reactive platelet zone, while the surrounding silicon crystal is described by the Stillinger–Weber (SW) classical potential. Reliable dynamical trajectories are obtained by choosing the DFTB zone in a way which minimizes the errors on the atomic forces.
doi_str_mv 10.1016/j.physb.2007.08.104
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_31288198</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0921452607006461</els_id><sourcerecordid>31288198</sourcerecordid><originalsourceid>FETCH-LOGICAL-c379t-97087547224ae1696633f97b08975e93a4e40232e8f50ae4338fb435d4805f753</originalsourceid><addsrcrecordid>eNp9kEtPwzAQhC0EEqXwC7j4hOCQ4ldi58ABVbykIi5wtlxn07pyHtgJKP8el3JmLyuNZnY1H0KXlCwoocXtbtFvp7heMELkgqgkiiM0o0ryjFGeH6MZKRnNRM6KU3QW446koZLOUP3aVeC9azf4mmKCyQ3eTlXoNtBmrq1GCxXuvRnAwxCxa3F03tmuxd9u2GKDm9EPLovWeMBN58GO3gRcTa1pnI3Y9H3ojN2eo5Pa-AgXf3uOPh4f3pfP2ert6WV5v8osl-WQlZIomQvJmDBAi7IoOK9LuSaqlDmU3AgQhHEGqs6JAcG5qteC55VQJK9lzufo6nA3vf0cIQ66cdGmgqaFboyaU6YULVUy8oPRhi7GALXug2tMmDQles9U7_QvU71nqolKokipu0MKUocvB0FH66BNkFwAO-iqc__mfwAIFX_L</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>31288198</pqid></control><display><type>article</type><title>Modelling (1 0 0) hydrogen-induced platelets in silicon with a multi-scale molecular dynamics approach</title><source>ScienceDirect Freedom Collection</source><creator>Moras, G. ; Colombi Ciacchi, L. ; Csanyi, G. ; De Vita, A.</creator><creatorcontrib>Moras, G. ; Colombi Ciacchi, L. ; Csanyi, G. ; De Vita, A.</creatorcontrib><description>We introduce a multiscale molecular dynamics (MD) approach to study the thermal evolution of (1 0 0) hydrogen-induced platelets (HIPs) in silicon. The HIPs are modeled by ∼10 nm long planar defects in a periodically repeated crystalline model system containing ∼25,000 silicon atoms. The initial defect models are created either by cleavage of atomic planes or by planar assemblies of vacancies, and are stabilized by saturating the resulting surface dangling bonds with hydrogen atoms. The time evolution of the defects is studied by finite-temperature MD using the “Learn On The Fly” (LOTF) technique. This hybrid scheme allows us to perform accurate density-functional-tight-binding (DFTB) force calculations only on the chemically reactive platelet zone, while the surrounding silicon crystal is described by the Stillinger–Weber (SW) classical potential. Reliable dynamical trajectories are obtained by choosing the DFTB zone in a way which minimizes the errors on the atomic forces.</description><identifier>ISSN: 0921-4526</identifier><identifier>EISSN: 1873-2135</identifier><identifier>DOI: 10.1016/j.physb.2007.08.104</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Hybrid methods ; Hydrogen-related platelets ; Molecular dynamics ; Silicon ; Smart cut</subject><ispartof>Physica. B, Condensed matter, 2007-12, Vol.401, p.16-20</ispartof><rights>2007 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c379t-97087547224ae1696633f97b08975e93a4e40232e8f50ae4338fb435d4805f753</citedby><cites>FETCH-LOGICAL-c379t-97087547224ae1696633f97b08975e93a4e40232e8f50ae4338fb435d4805f753</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Moras, G.</creatorcontrib><creatorcontrib>Colombi Ciacchi, L.</creatorcontrib><creatorcontrib>Csanyi, G.</creatorcontrib><creatorcontrib>De Vita, A.</creatorcontrib><title>Modelling (1 0 0) hydrogen-induced platelets in silicon with a multi-scale molecular dynamics approach</title><title>Physica. B, Condensed matter</title><description>We introduce a multiscale molecular dynamics (MD) approach to study the thermal evolution of (1 0 0) hydrogen-induced platelets (HIPs) in silicon. The HIPs are modeled by ∼10 nm long planar defects in a periodically repeated crystalline model system containing ∼25,000 silicon atoms. The initial defect models are created either by cleavage of atomic planes or by planar assemblies of vacancies, and are stabilized by saturating the resulting surface dangling bonds with hydrogen atoms. The time evolution of the defects is studied by finite-temperature MD using the “Learn On The Fly” (LOTF) technique. This hybrid scheme allows us to perform accurate density-functional-tight-binding (DFTB) force calculations only on the chemically reactive platelet zone, while the surrounding silicon crystal is described by the Stillinger–Weber (SW) classical potential. Reliable dynamical trajectories are obtained by choosing the DFTB zone in a way which minimizes the errors on the atomic forces.</description><subject>Hybrid methods</subject><subject>Hydrogen-related platelets</subject><subject>Molecular dynamics</subject><subject>Silicon</subject><subject>Smart cut</subject><issn>0921-4526</issn><issn>1873-2135</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNp9kEtPwzAQhC0EEqXwC7j4hOCQ4ldi58ABVbykIi5wtlxn07pyHtgJKP8el3JmLyuNZnY1H0KXlCwoocXtbtFvp7heMELkgqgkiiM0o0ryjFGeH6MZKRnNRM6KU3QW446koZLOUP3aVeC9azf4mmKCyQ3eTlXoNtBmrq1GCxXuvRnAwxCxa3F03tmuxd9u2GKDm9EPLovWeMBN58GO3gRcTa1pnI3Y9H3ojN2eo5Pa-AgXf3uOPh4f3pfP2ert6WV5v8osl-WQlZIomQvJmDBAi7IoOK9LuSaqlDmU3AgQhHEGqs6JAcG5qteC55VQJK9lzufo6nA3vf0cIQ66cdGmgqaFboyaU6YULVUy8oPRhi7GALXug2tMmDQles9U7_QvU71nqolKokipu0MKUocvB0FH66BNkFwAO-iqc__mfwAIFX_L</recordid><startdate>20071215</startdate><enddate>20071215</enddate><creator>Moras, G.</creator><creator>Colombi Ciacchi, L.</creator><creator>Csanyi, G.</creator><creator>De Vita, A.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20071215</creationdate><title>Modelling (1 0 0) hydrogen-induced platelets in silicon with a multi-scale molecular dynamics approach</title><author>Moras, G. ; Colombi Ciacchi, L. ; Csanyi, G. ; De Vita, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c379t-97087547224ae1696633f97b08975e93a4e40232e8f50ae4338fb435d4805f753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Hybrid methods</topic><topic>Hydrogen-related platelets</topic><topic>Molecular dynamics</topic><topic>Silicon</topic><topic>Smart cut</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moras, G.</creatorcontrib><creatorcontrib>Colombi Ciacchi, L.</creatorcontrib><creatorcontrib>Csanyi, G.</creatorcontrib><creatorcontrib>De Vita, A.</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physica. B, Condensed matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moras, G.</au><au>Colombi Ciacchi, L.</au><au>Csanyi, G.</au><au>De Vita, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modelling (1 0 0) hydrogen-induced platelets in silicon with a multi-scale molecular dynamics approach</atitle><jtitle>Physica. B, Condensed matter</jtitle><date>2007-12-15</date><risdate>2007</risdate><volume>401</volume><spage>16</spage><epage>20</epage><pages>16-20</pages><issn>0921-4526</issn><eissn>1873-2135</eissn><abstract>We introduce a multiscale molecular dynamics (MD) approach to study the thermal evolution of (1 0 0) hydrogen-induced platelets (HIPs) in silicon. The HIPs are modeled by ∼10 nm long planar defects in a periodically repeated crystalline model system containing ∼25,000 silicon atoms. The initial defect models are created either by cleavage of atomic planes or by planar assemblies of vacancies, and are stabilized by saturating the resulting surface dangling bonds with hydrogen atoms. The time evolution of the defects is studied by finite-temperature MD using the “Learn On The Fly” (LOTF) technique. This hybrid scheme allows us to perform accurate density-functional-tight-binding (DFTB) force calculations only on the chemically reactive platelet zone, while the surrounding silicon crystal is described by the Stillinger–Weber (SW) classical potential. Reliable dynamical trajectories are obtained by choosing the DFTB zone in a way which minimizes the errors on the atomic forces.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.physb.2007.08.104</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0921-4526
ispartof Physica. B, Condensed matter, 2007-12, Vol.401, p.16-20
issn 0921-4526
1873-2135
language eng
recordid cdi_proquest_miscellaneous_31288198
source ScienceDirect Freedom Collection
subjects Hybrid methods
Hydrogen-related platelets
Molecular dynamics
Silicon
Smart cut
title Modelling (1 0 0) hydrogen-induced platelets in silicon with a multi-scale molecular dynamics approach
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T02%3A34%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modelling%20(1%200%200)%20hydrogen-induced%20platelets%20in%20silicon%20with%20a%20multi-scale%20molecular%20dynamics%20approach&rft.jtitle=Physica.%20B,%20Condensed%20matter&rft.au=Moras,%20G.&rft.date=2007-12-15&rft.volume=401&rft.spage=16&rft.epage=20&rft.pages=16-20&rft.issn=0921-4526&rft.eissn=1873-2135&rft_id=info:doi/10.1016/j.physb.2007.08.104&rft_dat=%3Cproquest_cross%3E31288198%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c379t-97087547224ae1696633f97b08975e93a4e40232e8f50ae4338fb435d4805f753%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=31288198&rft_id=info:pmid/&rfr_iscdi=true