Loading…
Defective regression models for cure rate data with competing risks
In this paper, we propose a novel method for the analysis of cure rate data with competing risks using defective distributions. We develop two defective regression models for the analysis of competing risk data subjected to random right censoring. The proposed models enable us to estimate the cure f...
Saved in:
Published in: | Journal of biopharmaceutical statistics 2024-11, p.1-17 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper, we propose a novel method for the analysis of cure rate data with competing risks using defective distributions. We develop two defective regression models for the analysis of competing risk data subjected to random right censoring. The proposed models enable us to estimate the cure fraction directly from the model. Simultaneously, we also estimate the regression parameters corresponding to each cause of failure using the method of maximum likelihood. We conduct a simulation study to evaluate the finite sample performance of the proposed estimators. The practical usefulness of the procedures is illustrated using two real-life data sets. |
---|---|
ISSN: | 1054-3406 1520-5711 1520-5711 |
DOI: | 10.1080/10543406.2024.2424838 |