Loading…
Effect of cyclic vacuum-steam blanching on the quality characteristics and functional properties of Malabar spinach (Basella alba) dried by non-water infrared refractance window drying
In the present work, an effluent-free novel method including cyclic vacuum steam pulsed blanching (VSPB) pretreatment and non-water infrared refractance window drying (non-water IR-RWD) was employed to explore its effect on enzyme inactivation, drying behavior, quality and functional properties of d...
Saved in:
Published in: | Food chemistry 2025-02, Vol.465 (Pt 1), p.141901, Article 141901 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In the present work, an effluent-free novel method including cyclic vacuum steam pulsed blanching (VSPB) pretreatment and non-water infrared refractance window drying (non-water IR-RWD) was employed to explore its effect on enzyme inactivation, drying behavior, quality and functional properties of dried Malabar spinach. The highest inactivation of peroxidase (90.23 %) and polyphenol oxidase (94.58 %) was observed in the 4th cycle of the VSPB pretreatment. With the increase in VSPB cycles from 1 to 5, the drying time was significantly reduced by 27.27 % to 54.54 % compared to the untreated sample. The color change values (ΔE) of VSPB pretreated non-water IR-RWD samples varied from 7.37 to 8.03. The findings in the current work indicated that vacuum-steam pulsed blanching combined with a non-water IR-RWD process is a promising technique for Malabar spinach powder production.
•Vacuum steam pulsed blanching (VSPB) reduced drying time by 54.54 %.•The 4th cycle VSPB showed an effective reduction in enzyme activity.•VSPB enhanced total chlorophyll and total phenolic content of Malabar spinach.•VSPB combined with drying gives high-quality Malabar spinach powder. |
---|---|
ISSN: | 0308-8146 1873-7072 1873-7072 |
DOI: | 10.1016/j.foodchem.2024.141901 |