Loading…

hERGBoost: A gradient boosting model for quantitative IC50 prediction of hERG channel blockers

The human ether-a-go-go-related gene (hERG) potassium channel is pivotal in drug discovery due to its susceptibility to blockage by drug candidate molecules, which can cause severe cardiotoxic effects. Consequently, identifying and excluding potential hERG channel blockers at the earliest stages of...

Full description

Saved in:
Bibliographic Details
Published in:Computers in biology and medicine 2025-01, Vol.184, p.109416, Article 109416
Main Authors: Yu, Myeong-Sang, Lee, Jingyu, Lee, Yunhyeok, Cho, Daeahn, Oh, Kwang-Seok, Jang, Jidon, Nong, Nuong Thi, Lee, Hyang-Mi, Na, Dokyun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c1412-befed6e7c171528231081a1b259ecd859f4c79d225aaa57ff8108d9a3af778903
container_end_page
container_issue
container_start_page 109416
container_title Computers in biology and medicine
container_volume 184
creator Yu, Myeong-Sang
Lee, Jingyu
Lee, Yunhyeok
Cho, Daeahn
Oh, Kwang-Seok
Jang, Jidon
Nong, Nuong Thi
Lee, Hyang-Mi
Na, Dokyun
description The human ether-a-go-go-related gene (hERG) potassium channel is pivotal in drug discovery due to its susceptibility to blockage by drug candidate molecules, which can cause severe cardiotoxic effects. Consequently, identifying and excluding potential hERG channel blockers at the earliest stages of drug development is crucial. Most traditional machine learning models predict a molecule's cardiotoxicity or non-cardiotoxicity typically at 10 μM, which doesn't account for compounds with low IC50 values that are non-toxic at therapeutic levels due to their high effectiveness at lower concentrations. To address the need for more precise, quantitative predictions, we developed hERGBoost, a cutting-edge machine learning model employing a gradient-boosting algorithm. This model demonstrates superior accuracy in predicting the IC50 of drug candidates. Trained on a specially curated dataset for this study, hERGBoost not only exhibited excellent performance in external validation, achieving an R2 score of 0.394 and a low root mean square error of 0.616 but also significantly outstripped previous models in both qualitative and quantitative assessments. Representing a notable leap forward in the prediction of hERG channel blockers, the hERGBoost model and its datasets are freely available to the drug discovery community on our web server at. http://ssbio.cau.ac.kr/software/hergboost This resource promises to be invaluable in advancing safer pharmaceutical development. •HERGBoost quantitatively predicts cardiotoxicity as IC50 values of hERG channel.•Our model was constructed with collective dataset and gradient boosting algorithm.•The model outperformed previous approaches in qualitative and quantitative assessments.•The model, hERGBoost, and the datasets used in this study are freely accessible at http://ssbio.cau.ac.kr/software/hergboost.
doi_str_mv 10.1016/j.compbiomed.2024.109416
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3129683152</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010482524015014</els_id><sourcerecordid>3129683152</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1412-befed6e7c171528231081a1b259ecd859f4c79d225aaa57ff8108d9a3af778903</originalsourceid><addsrcrecordid>eNqFkE1LAzEURYMoWKv_IUs3U5PMV8ZdW2otCILo1pBJXtrUmUmbTAv-ezOM4NLVg8u9B95BCFMyo4QWD_uZcu2htq4FPWOEZTGuMlpcoAnlZZWQPM0u0YQQSpKMs_wa3YSwJ4RkJCUT9Llbva0XzoX-Ec_x1kttoetxPSS22-LWaWiwcR4fT7LrbS97ewa8WeYEHzxoq3rrOuwMHkBY7WTXxUHdOPUFPtyiKyObAHe_d4o-nlbvy-fk5XW9Wc5fEkUzypIaDOgCSkVLmjPOUko4lbRmeQVK87wymSorzVgupcxLY3gs6Eqm0pQlr0g6Rfcj9-Dd8QShF60NCppGduBOQaSUVQVPIzxW-VhV3oXgwYiDt63034ISMSgVe_GnVAxKxag0ThfjFOIrZwteBBV1qajBg-qFdvZ_yA_bkoP_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3129683152</pqid></control><display><type>article</type><title>hERGBoost: A gradient boosting model for quantitative IC50 prediction of hERG channel blockers</title><source>ScienceDirect Journals</source><creator>Yu, Myeong-Sang ; Lee, Jingyu ; Lee, Yunhyeok ; Cho, Daeahn ; Oh, Kwang-Seok ; Jang, Jidon ; Nong, Nuong Thi ; Lee, Hyang-Mi ; Na, Dokyun</creator><creatorcontrib>Yu, Myeong-Sang ; Lee, Jingyu ; Lee, Yunhyeok ; Cho, Daeahn ; Oh, Kwang-Seok ; Jang, Jidon ; Nong, Nuong Thi ; Lee, Hyang-Mi ; Na, Dokyun</creatorcontrib><description>The human ether-a-go-go-related gene (hERG) potassium channel is pivotal in drug discovery due to its susceptibility to blockage by drug candidate molecules, which can cause severe cardiotoxic effects. Consequently, identifying and excluding potential hERG channel blockers at the earliest stages of drug development is crucial. Most traditional machine learning models predict a molecule's cardiotoxicity or non-cardiotoxicity typically at 10 μM, which doesn't account for compounds with low IC50 values that are non-toxic at therapeutic levels due to their high effectiveness at lower concentrations. To address the need for more precise, quantitative predictions, we developed hERGBoost, a cutting-edge machine learning model employing a gradient-boosting algorithm. This model demonstrates superior accuracy in predicting the IC50 of drug candidates. Trained on a specially curated dataset for this study, hERGBoost not only exhibited excellent performance in external validation, achieving an R2 score of 0.394 and a low root mean square error of 0.616 but also significantly outstripped previous models in both qualitative and quantitative assessments. Representing a notable leap forward in the prediction of hERG channel blockers, the hERGBoost model and its datasets are freely available to the drug discovery community on our web server at. http://ssbio.cau.ac.kr/software/hergboost This resource promises to be invaluable in advancing safer pharmaceutical development. •HERGBoost quantitatively predicts cardiotoxicity as IC50 values of hERG channel.•Our model was constructed with collective dataset and gradient boosting algorithm.•The model outperformed previous approaches in qualitative and quantitative assessments.•The model, hERGBoost, and the datasets used in this study are freely accessible at http://ssbio.cau.ac.kr/software/hergboost.</description><identifier>ISSN: 0010-4825</identifier><identifier>ISSN: 1879-0534</identifier><identifier>EISSN: 1879-0534</identifier><identifier>DOI: 10.1016/j.compbiomed.2024.109416</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Cardiotoxicity ; Drug development ; Gradient boosting ; Human ether-a-go-go-related gene (hERG) ; Machine learning</subject><ispartof>Computers in biology and medicine, 2025-01, Vol.184, p.109416, Article 109416</ispartof><rights>2024 Elsevier Ltd</rights><rights>Copyright © 2024 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1412-befed6e7c171528231081a1b259ecd859f4c79d225aaa57ff8108d9a3af778903</cites><orcidid>0009-0002-3520-9878 ; 0009-0004-1651-2198 ; 0000-0001-5885-2941 ; 0000-0002-9107-7040</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Yu, Myeong-Sang</creatorcontrib><creatorcontrib>Lee, Jingyu</creatorcontrib><creatorcontrib>Lee, Yunhyeok</creatorcontrib><creatorcontrib>Cho, Daeahn</creatorcontrib><creatorcontrib>Oh, Kwang-Seok</creatorcontrib><creatorcontrib>Jang, Jidon</creatorcontrib><creatorcontrib>Nong, Nuong Thi</creatorcontrib><creatorcontrib>Lee, Hyang-Mi</creatorcontrib><creatorcontrib>Na, Dokyun</creatorcontrib><title>hERGBoost: A gradient boosting model for quantitative IC50 prediction of hERG channel blockers</title><title>Computers in biology and medicine</title><description>The human ether-a-go-go-related gene (hERG) potassium channel is pivotal in drug discovery due to its susceptibility to blockage by drug candidate molecules, which can cause severe cardiotoxic effects. Consequently, identifying and excluding potential hERG channel blockers at the earliest stages of drug development is crucial. Most traditional machine learning models predict a molecule's cardiotoxicity or non-cardiotoxicity typically at 10 μM, which doesn't account for compounds with low IC50 values that are non-toxic at therapeutic levels due to their high effectiveness at lower concentrations. To address the need for more precise, quantitative predictions, we developed hERGBoost, a cutting-edge machine learning model employing a gradient-boosting algorithm. This model demonstrates superior accuracy in predicting the IC50 of drug candidates. Trained on a specially curated dataset for this study, hERGBoost not only exhibited excellent performance in external validation, achieving an R2 score of 0.394 and a low root mean square error of 0.616 but also significantly outstripped previous models in both qualitative and quantitative assessments. Representing a notable leap forward in the prediction of hERG channel blockers, the hERGBoost model and its datasets are freely available to the drug discovery community on our web server at. http://ssbio.cau.ac.kr/software/hergboost This resource promises to be invaluable in advancing safer pharmaceutical development. •HERGBoost quantitatively predicts cardiotoxicity as IC50 values of hERG channel.•Our model was constructed with collective dataset and gradient boosting algorithm.•The model outperformed previous approaches in qualitative and quantitative assessments.•The model, hERGBoost, and the datasets used in this study are freely accessible at http://ssbio.cau.ac.kr/software/hergboost.</description><subject>Cardiotoxicity</subject><subject>Drug development</subject><subject>Gradient boosting</subject><subject>Human ether-a-go-go-related gene (hERG)</subject><subject>Machine learning</subject><issn>0010-4825</issn><issn>1879-0534</issn><issn>1879-0534</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEURYMoWKv_IUs3U5PMV8ZdW2otCILo1pBJXtrUmUmbTAv-ezOM4NLVg8u9B95BCFMyo4QWD_uZcu2htq4FPWOEZTGuMlpcoAnlZZWQPM0u0YQQSpKMs_wa3YSwJ4RkJCUT9Llbva0XzoX-Ec_x1kttoetxPSS22-LWaWiwcR4fT7LrbS97ewa8WeYEHzxoq3rrOuwMHkBY7WTXxUHdOPUFPtyiKyObAHe_d4o-nlbvy-fk5XW9Wc5fEkUzypIaDOgCSkVLmjPOUko4lbRmeQVK87wymSorzVgupcxLY3gs6Eqm0pQlr0g6Rfcj9-Dd8QShF60NCppGduBOQaSUVQVPIzxW-VhV3oXgwYiDt63034ISMSgVe_GnVAxKxag0ThfjFOIrZwteBBV1qajBg-qFdvZ_yA_bkoP_</recordid><startdate>202501</startdate><enddate>202501</enddate><creator>Yu, Myeong-Sang</creator><creator>Lee, Jingyu</creator><creator>Lee, Yunhyeok</creator><creator>Cho, Daeahn</creator><creator>Oh, Kwang-Seok</creator><creator>Jang, Jidon</creator><creator>Nong, Nuong Thi</creator><creator>Lee, Hyang-Mi</creator><creator>Na, Dokyun</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0009-0002-3520-9878</orcidid><orcidid>https://orcid.org/0009-0004-1651-2198</orcidid><orcidid>https://orcid.org/0000-0001-5885-2941</orcidid><orcidid>https://orcid.org/0000-0002-9107-7040</orcidid></search><sort><creationdate>202501</creationdate><title>hERGBoost: A gradient boosting model for quantitative IC50 prediction of hERG channel blockers</title><author>Yu, Myeong-Sang ; Lee, Jingyu ; Lee, Yunhyeok ; Cho, Daeahn ; Oh, Kwang-Seok ; Jang, Jidon ; Nong, Nuong Thi ; Lee, Hyang-Mi ; Na, Dokyun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1412-befed6e7c171528231081a1b259ecd859f4c79d225aaa57ff8108d9a3af778903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Cardiotoxicity</topic><topic>Drug development</topic><topic>Gradient boosting</topic><topic>Human ether-a-go-go-related gene (hERG)</topic><topic>Machine learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Myeong-Sang</creatorcontrib><creatorcontrib>Lee, Jingyu</creatorcontrib><creatorcontrib>Lee, Yunhyeok</creatorcontrib><creatorcontrib>Cho, Daeahn</creatorcontrib><creatorcontrib>Oh, Kwang-Seok</creatorcontrib><creatorcontrib>Jang, Jidon</creatorcontrib><creatorcontrib>Nong, Nuong Thi</creatorcontrib><creatorcontrib>Lee, Hyang-Mi</creatorcontrib><creatorcontrib>Na, Dokyun</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Computers in biology and medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Myeong-Sang</au><au>Lee, Jingyu</au><au>Lee, Yunhyeok</au><au>Cho, Daeahn</au><au>Oh, Kwang-Seok</au><au>Jang, Jidon</au><au>Nong, Nuong Thi</au><au>Lee, Hyang-Mi</au><au>Na, Dokyun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>hERGBoost: A gradient boosting model for quantitative IC50 prediction of hERG channel blockers</atitle><jtitle>Computers in biology and medicine</jtitle><date>2025-01</date><risdate>2025</risdate><volume>184</volume><spage>109416</spage><pages>109416-</pages><artnum>109416</artnum><issn>0010-4825</issn><issn>1879-0534</issn><eissn>1879-0534</eissn><abstract>The human ether-a-go-go-related gene (hERG) potassium channel is pivotal in drug discovery due to its susceptibility to blockage by drug candidate molecules, which can cause severe cardiotoxic effects. Consequently, identifying and excluding potential hERG channel blockers at the earliest stages of drug development is crucial. Most traditional machine learning models predict a molecule's cardiotoxicity or non-cardiotoxicity typically at 10 μM, which doesn't account for compounds with low IC50 values that are non-toxic at therapeutic levels due to their high effectiveness at lower concentrations. To address the need for more precise, quantitative predictions, we developed hERGBoost, a cutting-edge machine learning model employing a gradient-boosting algorithm. This model demonstrates superior accuracy in predicting the IC50 of drug candidates. Trained on a specially curated dataset for this study, hERGBoost not only exhibited excellent performance in external validation, achieving an R2 score of 0.394 and a low root mean square error of 0.616 but also significantly outstripped previous models in both qualitative and quantitative assessments. Representing a notable leap forward in the prediction of hERG channel blockers, the hERGBoost model and its datasets are freely available to the drug discovery community on our web server at. http://ssbio.cau.ac.kr/software/hergboost This resource promises to be invaluable in advancing safer pharmaceutical development. •HERGBoost quantitatively predicts cardiotoxicity as IC50 values of hERG channel.•Our model was constructed with collective dataset and gradient boosting algorithm.•The model outperformed previous approaches in qualitative and quantitative assessments.•The model, hERGBoost, and the datasets used in this study are freely accessible at http://ssbio.cau.ac.kr/software/hergboost.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.compbiomed.2024.109416</doi><orcidid>https://orcid.org/0009-0002-3520-9878</orcidid><orcidid>https://orcid.org/0009-0004-1651-2198</orcidid><orcidid>https://orcid.org/0000-0001-5885-2941</orcidid><orcidid>https://orcid.org/0000-0002-9107-7040</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0010-4825
ispartof Computers in biology and medicine, 2025-01, Vol.184, p.109416, Article 109416
issn 0010-4825
1879-0534
1879-0534
language eng
recordid cdi_proquest_miscellaneous_3129683152
source ScienceDirect Journals
subjects Cardiotoxicity
Drug development
Gradient boosting
Human ether-a-go-go-related gene (hERG)
Machine learning
title hERGBoost: A gradient boosting model for quantitative IC50 prediction of hERG channel blockers
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T02%3A33%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=hERGBoost:%20A%20gradient%20boosting%20model%20for%20quantitative%20IC50%20prediction%20of%20hERG%20channel%20blockers&rft.jtitle=Computers%20in%20biology%20and%20medicine&rft.au=Yu,%20Myeong-Sang&rft.date=2025-01&rft.volume=184&rft.spage=109416&rft.pages=109416-&rft.artnum=109416&rft.issn=0010-4825&rft.eissn=1879-0534&rft_id=info:doi/10.1016/j.compbiomed.2024.109416&rft_dat=%3Cproquest_cross%3E3129683152%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1412-befed6e7c171528231081a1b259ecd859f4c79d225aaa57ff8108d9a3af778903%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3129683152&rft_id=info:pmid/&rfr_iscdi=true