Loading…

Stabilization and crystallization mechanism of amorphous calcium carbonate

[Display omitted] Amorphous phases hold great promise in diverse applications and are widely used by organisms as precursors to produce biominerals with complex morphologies and excellent properties. However, the stabilization and crystallization mechanisms of amorphous phases are not fully understo...

Full description

Saved in:
Bibliographic Details
Published in:Journal of colloid and interface science 2025-02, Vol.680 (Pt B), p.24-35
Main Authors: Wang, Qihang, Huang, Wenyang, Wang, Jilin, Long, Fei, Fu, Zhengyi, Xie, Jingjing, Zou, Zhaoyong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c237t-45478cc58cf7bcd995cc00a32d5644fd2b4c4b644ccb79ca1a9a44baac7bf2cc3
container_end_page 35
container_issue Pt B
container_start_page 24
container_title Journal of colloid and interface science
container_volume 680
creator Wang, Qihang
Huang, Wenyang
Wang, Jilin
Long, Fei
Fu, Zhengyi
Xie, Jingjing
Zou, Zhaoyong
description [Display omitted] Amorphous phases hold great promise in diverse applications and are widely used by organisms as precursors to produce biominerals with complex morphologies and excellent properties. However, the stabilization and crystallization mechanisms of amorphous phases are not fully understood, especially in the presence of additives. Here, using amorphous calcium carbonate (ACC) as the model system, we systematically investigate the crystallization pathways of amorphous phases in the presence of poly(Aspartic acid) (pAsp) with various chain lengths. Results show that pure ACC transforms into a mixture of calcite and vaterite via the typical dissolution–recrystallization mechanism and 3 % of Asp monomer exhibits negligible effect. However, pAsp with a chain length of only 10 strongly inhibits the aggregation-induced formation of vaterite spheres while slightly delaying the growth of calcite via classical ion-by-ion attachment, thus kinetically favoring the formation of calcite. Moreover, the inhibition effect of calcite growth from solution ions becomes more prominent with the increase of pAsp chain length or concentration, which significantly improves the stability of the amorphous phase and leads to crystallization of spherical or elongated calcite via the nonclassical particle attachment mechanism after pseudomorphic transformation of ACC into vaterite nanoparticles. These results allow us to reach a more comprehensive understanding of the stabilization and crystallization mechanism of ACC in the presence of additives and provide guidelines for controlling the polymorph selection and morphology of crystals during the crystallization of amorphous precursors.
doi_str_mv 10.1016/j.jcis.2024.11.076
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3129683648</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021979724026523</els_id><sourcerecordid>3129683648</sourcerecordid><originalsourceid>FETCH-LOGICAL-c237t-45478cc58cf7bcd995cc00a32d5644fd2b4c4b644ccb79ca1a9a44baac7bf2cc3</originalsourceid><addsrcrecordid>eNp9kEtPwzAQhC0EoqXwBzigHLkk2I4dxxIXhHiqEgfgbK03juoqj2KnSOXXk6qlR06zWs2Mdj9CLhnNGGXFzTJboo8Zp1xkjGVUFUdkyqiWqWI0PyZTSjlLtdJqQs5iXFLKmJT6lExyLSUtJZ2S1_cBrG_8Dwy-7xLoqgTDJg7QHHatwwV0PrZJXyfQ9mG16NcxQWjQr9tRg-07GNw5Oamhie5irzPy-fjwcf-czt-eXu7v5inyXA2pkEKViLLEWlmstJaIlELOK1kIUVfcChR2HBGt0ggMNAhhAVDZmiPmM3K9612F_mvt4mBaH9E1DXRuPMzkjOuizAtRjla-s2LoYwyuNqvgWwgbw6jZMjRLs2VotgwNY2ZkOIau9v1r27rqEPmDNhpudwY3fvntXTARvevQVT44HEzV-__6fwFhdYTU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3129683648</pqid></control><display><type>article</type><title>Stabilization and crystallization mechanism of amorphous calcium carbonate</title><source>Elsevier</source><creator>Wang, Qihang ; Huang, Wenyang ; Wang, Jilin ; Long, Fei ; Fu, Zhengyi ; Xie, Jingjing ; Zou, Zhaoyong</creator><creatorcontrib>Wang, Qihang ; Huang, Wenyang ; Wang, Jilin ; Long, Fei ; Fu, Zhengyi ; Xie, Jingjing ; Zou, Zhaoyong</creatorcontrib><description>[Display omitted] Amorphous phases hold great promise in diverse applications and are widely used by organisms as precursors to produce biominerals with complex morphologies and excellent properties. However, the stabilization and crystallization mechanisms of amorphous phases are not fully understood, especially in the presence of additives. Here, using amorphous calcium carbonate (ACC) as the model system, we systematically investigate the crystallization pathways of amorphous phases in the presence of poly(Aspartic acid) (pAsp) with various chain lengths. Results show that pure ACC transforms into a mixture of calcite and vaterite via the typical dissolution–recrystallization mechanism and 3 % of Asp monomer exhibits negligible effect. However, pAsp with a chain length of only 10 strongly inhibits the aggregation-induced formation of vaterite spheres while slightly delaying the growth of calcite via classical ion-by-ion attachment, thus kinetically favoring the formation of calcite. Moreover, the inhibition effect of calcite growth from solution ions becomes more prominent with the increase of pAsp chain length or concentration, which significantly improves the stability of the amorphous phase and leads to crystallization of spherical or elongated calcite via the nonclassical particle attachment mechanism after pseudomorphic transformation of ACC into vaterite nanoparticles. These results allow us to reach a more comprehensive understanding of the stabilization and crystallization mechanism of ACC in the presence of additives and provide guidelines for controlling the polymorph selection and morphology of crystals during the crystallization of amorphous precursors.</description><identifier>ISSN: 0021-9797</identifier><identifier>ISSN: 1095-7103</identifier><identifier>EISSN: 1095-7103</identifier><identifier>DOI: 10.1016/j.jcis.2024.11.076</identifier><identifier>PMID: 39550850</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Amorphous calcium carbonate ; Aspartic acid ; Chain lengths ; Crystallization ; Particle attachment</subject><ispartof>Journal of colloid and interface science, 2025-02, Vol.680 (Pt B), p.24-35</ispartof><rights>2024 Elsevier Inc.</rights><rights>Copyright © 2024 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c237t-45478cc58cf7bcd995cc00a32d5644fd2b4c4b644ccb79ca1a9a44baac7bf2cc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39550850$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Qihang</creatorcontrib><creatorcontrib>Huang, Wenyang</creatorcontrib><creatorcontrib>Wang, Jilin</creatorcontrib><creatorcontrib>Long, Fei</creatorcontrib><creatorcontrib>Fu, Zhengyi</creatorcontrib><creatorcontrib>Xie, Jingjing</creatorcontrib><creatorcontrib>Zou, Zhaoyong</creatorcontrib><title>Stabilization and crystallization mechanism of amorphous calcium carbonate</title><title>Journal of colloid and interface science</title><addtitle>J Colloid Interface Sci</addtitle><description>[Display omitted] Amorphous phases hold great promise in diverse applications and are widely used by organisms as precursors to produce biominerals with complex morphologies and excellent properties. However, the stabilization and crystallization mechanisms of amorphous phases are not fully understood, especially in the presence of additives. Here, using amorphous calcium carbonate (ACC) as the model system, we systematically investigate the crystallization pathways of amorphous phases in the presence of poly(Aspartic acid) (pAsp) with various chain lengths. Results show that pure ACC transforms into a mixture of calcite and vaterite via the typical dissolution–recrystallization mechanism and 3 % of Asp monomer exhibits negligible effect. However, pAsp with a chain length of only 10 strongly inhibits the aggregation-induced formation of vaterite spheres while slightly delaying the growth of calcite via classical ion-by-ion attachment, thus kinetically favoring the formation of calcite. Moreover, the inhibition effect of calcite growth from solution ions becomes more prominent with the increase of pAsp chain length or concentration, which significantly improves the stability of the amorphous phase and leads to crystallization of spherical or elongated calcite via the nonclassical particle attachment mechanism after pseudomorphic transformation of ACC into vaterite nanoparticles. These results allow us to reach a more comprehensive understanding of the stabilization and crystallization mechanism of ACC in the presence of additives and provide guidelines for controlling the polymorph selection and morphology of crystals during the crystallization of amorphous precursors.</description><subject>Amorphous calcium carbonate</subject><subject>Aspartic acid</subject><subject>Chain lengths</subject><subject>Crystallization</subject><subject>Particle attachment</subject><issn>0021-9797</issn><issn>1095-7103</issn><issn>1095-7103</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNp9kEtPwzAQhC0EoqXwBzigHLkk2I4dxxIXhHiqEgfgbK03juoqj2KnSOXXk6qlR06zWs2Mdj9CLhnNGGXFzTJboo8Zp1xkjGVUFUdkyqiWqWI0PyZTSjlLtdJqQs5iXFLKmJT6lExyLSUtJZ2S1_cBrG_8Dwy-7xLoqgTDJg7QHHatwwV0PrZJXyfQ9mG16NcxQWjQr9tRg-07GNw5Oamhie5irzPy-fjwcf-czt-eXu7v5inyXA2pkEKViLLEWlmstJaIlELOK1kIUVfcChR2HBGt0ggMNAhhAVDZmiPmM3K9612F_mvt4mBaH9E1DXRuPMzkjOuizAtRjla-s2LoYwyuNqvgWwgbw6jZMjRLs2VotgwNY2ZkOIau9v1r27rqEPmDNhpudwY3fvntXTARvevQVT44HEzV-__6fwFhdYTU</recordid><startdate>20250215</startdate><enddate>20250215</enddate><creator>Wang, Qihang</creator><creator>Huang, Wenyang</creator><creator>Wang, Jilin</creator><creator>Long, Fei</creator><creator>Fu, Zhengyi</creator><creator>Xie, Jingjing</creator><creator>Zou, Zhaoyong</creator><general>Elsevier Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20250215</creationdate><title>Stabilization and crystallization mechanism of amorphous calcium carbonate</title><author>Wang, Qihang ; Huang, Wenyang ; Wang, Jilin ; Long, Fei ; Fu, Zhengyi ; Xie, Jingjing ; Zou, Zhaoyong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c237t-45478cc58cf7bcd995cc00a32d5644fd2b4c4b644ccb79ca1a9a44baac7bf2cc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Amorphous calcium carbonate</topic><topic>Aspartic acid</topic><topic>Chain lengths</topic><topic>Crystallization</topic><topic>Particle attachment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Qihang</creatorcontrib><creatorcontrib>Huang, Wenyang</creatorcontrib><creatorcontrib>Wang, Jilin</creatorcontrib><creatorcontrib>Long, Fei</creatorcontrib><creatorcontrib>Fu, Zhengyi</creatorcontrib><creatorcontrib>Xie, Jingjing</creatorcontrib><creatorcontrib>Zou, Zhaoyong</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of colloid and interface science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Qihang</au><au>Huang, Wenyang</au><au>Wang, Jilin</au><au>Long, Fei</au><au>Fu, Zhengyi</au><au>Xie, Jingjing</au><au>Zou, Zhaoyong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stabilization and crystallization mechanism of amorphous calcium carbonate</atitle><jtitle>Journal of colloid and interface science</jtitle><addtitle>J Colloid Interface Sci</addtitle><date>2025-02-15</date><risdate>2025</risdate><volume>680</volume><issue>Pt B</issue><spage>24</spage><epage>35</epage><pages>24-35</pages><issn>0021-9797</issn><issn>1095-7103</issn><eissn>1095-7103</eissn><abstract>[Display omitted] Amorphous phases hold great promise in diverse applications and are widely used by organisms as precursors to produce biominerals with complex morphologies and excellent properties. However, the stabilization and crystallization mechanisms of amorphous phases are not fully understood, especially in the presence of additives. Here, using amorphous calcium carbonate (ACC) as the model system, we systematically investigate the crystallization pathways of amorphous phases in the presence of poly(Aspartic acid) (pAsp) with various chain lengths. Results show that pure ACC transforms into a mixture of calcite and vaterite via the typical dissolution–recrystallization mechanism and 3 % of Asp monomer exhibits negligible effect. However, pAsp with a chain length of only 10 strongly inhibits the aggregation-induced formation of vaterite spheres while slightly delaying the growth of calcite via classical ion-by-ion attachment, thus kinetically favoring the formation of calcite. Moreover, the inhibition effect of calcite growth from solution ions becomes more prominent with the increase of pAsp chain length or concentration, which significantly improves the stability of the amorphous phase and leads to crystallization of spherical or elongated calcite via the nonclassical particle attachment mechanism after pseudomorphic transformation of ACC into vaterite nanoparticles. These results allow us to reach a more comprehensive understanding of the stabilization and crystallization mechanism of ACC in the presence of additives and provide guidelines for controlling the polymorph selection and morphology of crystals during the crystallization of amorphous precursors.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>39550850</pmid><doi>10.1016/j.jcis.2024.11.076</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9797
ispartof Journal of colloid and interface science, 2025-02, Vol.680 (Pt B), p.24-35
issn 0021-9797
1095-7103
1095-7103
language eng
recordid cdi_proquest_miscellaneous_3129683648
source Elsevier
subjects Amorphous calcium carbonate
Aspartic acid
Chain lengths
Crystallization
Particle attachment
title Stabilization and crystallization mechanism of amorphous calcium carbonate
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T16%3A18%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stabilization%20and%20crystallization%20mechanism%20of%20amorphous%20calcium%20carbonate&rft.jtitle=Journal%20of%20colloid%20and%20interface%20science&rft.au=Wang,%20Qihang&rft.date=2025-02-15&rft.volume=680&rft.issue=Pt%20B&rft.spage=24&rft.epage=35&rft.pages=24-35&rft.issn=0021-9797&rft.eissn=1095-7103&rft_id=info:doi/10.1016/j.jcis.2024.11.076&rft_dat=%3Cproquest_cross%3E3129683648%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c237t-45478cc58cf7bcd995cc00a32d5644fd2b4c4b644ccb79ca1a9a44baac7bf2cc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3129683648&rft_id=info:pmid/39550850&rfr_iscdi=true