Loading…

Next-Gen Poly(ε-Caprolactone) Scaffolds: Non-Destructive In Vivo Monitoring and Accelerated Biodegradation

Poly(ɛ-caprolactone) (PCL) is a biocompatible, biodegradable, and highly mechanically resilient FDA-approved material (for specific biomedical applications, e.g. as drug delivery devices, in sutures, or as an adhesion barrier), rendering it a promising candidate to serve bone tissue engineering. How...

Full description

Saved in:
Bibliographic Details
Published in:Advanced healthcare materials 2024-11, p.e2402256
Main Authors: Kolouchova, Kristyna, Thijssen, Quinten, Groborz, Ondrej, Van Damme, Lana, Humajova, Jana, Matous, Petr, Quaak, Astrid, Dusa, Martin, Kucka, Jan, Sefc, Ludek, Hruby, Martin, Van Vlierberghe, Sandra
Format: Article
Language:English
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c220t-ea665e8b4200ec75bc6891cd37f8abcd8795e8af0b6fe66fee7eeb188901422e3
container_end_page
container_issue
container_start_page e2402256
container_title Advanced healthcare materials
container_volume
creator Kolouchova, Kristyna
Thijssen, Quinten
Groborz, Ondrej
Van Damme, Lana
Humajova, Jana
Matous, Petr
Quaak, Astrid
Dusa, Martin
Kucka, Jan
Sefc, Ludek
Hruby, Martin
Van Vlierberghe, Sandra
description Poly(ɛ-caprolactone) (PCL) is a biocompatible, biodegradable, and highly mechanically resilient FDA-approved material (for specific biomedical applications, e.g. as drug delivery devices, in sutures, or as an adhesion barrier), rendering it a promising candidate to serve bone tissue engineering. However, in vivo monitoring of PCL-based implants, as well as biodegradable implants in general, and their degradation profiles pose a significant challenge, hindering further development in the tissue engineering field and subsequent clinical adoption. To address this, photo-cross-linkable mechanically resilient PCL networks are developed and functionalized with a radiopaque monomer, 5-acrylamido-2,4,6-triiodoisophthalic acid (AATIPA), to enable non-destructive in vivo monitoring of PCL-based implants. The covalent incorporation of AATIPA into the crosslinked PCL networks does not significantly affect their crosslinking kinetics, mechanical properties, or thermal properties, but it increases their hydrolysis rate and radiopacity. Complex and porous 3D designs of radiopaque PCL networks can be effectively monitored in vivo. This work paves the way toward non-invasive monitoring of in vivo degradation profiles and early detection of potential implant malfunctions.
doi_str_mv 10.1002/adhm.202402256
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3130207547</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3130207547</sourcerecordid><originalsourceid>FETCH-LOGICAL-c220t-ea665e8b4200ec75bc6891cd37f8abcd8795e8af0b6fe66fee7eeb188901422e3</originalsourceid><addsrcrecordid>eNo9kM9OwzAMxiMEYtPYlSPKcRw6krRNU25jwJg0BhJ_rlWauKPQJSNpJ_ZgvAbPRCfGLFm25M-f7B9Cp5QMKSHsQuq35ZARFhHGYn6AuoymLGA8Tg_3fUQ6qO_9O2mDx5QLeow6YRrHIhGiiz7m8FUHEzD40Vabwc93MJYrZyupamvgHD8pWRS20v4Sz60JrsHXrlF1uQY8Nfi1XFt8b01ZW1eaBZZG45FSUIGTNWh8VVoNCye1rEtrTtBRISsP_V3toZfbm-fxXTB7mEzHo1mgGCN1AJLzGEQeMUJAJXGuuEip0mFSCJkrLZK0HcuC5LwA3iYkADkVIiU0YgzCHhr8-baPfDbtxdmy9O1RlTRgG5-FNCSMJHGUtNLhn1Q5672DIlu5cindJqMk2zLOtoyzPeN24Wzn3eRL0Hv5P9HwF3-LeTY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3130207547</pqid></control><display><type>article</type><title>Next-Gen Poly(ε-Caprolactone) Scaffolds: Non-Destructive In Vivo Monitoring and Accelerated Biodegradation</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Kolouchova, Kristyna ; Thijssen, Quinten ; Groborz, Ondrej ; Van Damme, Lana ; Humajova, Jana ; Matous, Petr ; Quaak, Astrid ; Dusa, Martin ; Kucka, Jan ; Sefc, Ludek ; Hruby, Martin ; Van Vlierberghe, Sandra</creator><creatorcontrib>Kolouchova, Kristyna ; Thijssen, Quinten ; Groborz, Ondrej ; Van Damme, Lana ; Humajova, Jana ; Matous, Petr ; Quaak, Astrid ; Dusa, Martin ; Kucka, Jan ; Sefc, Ludek ; Hruby, Martin ; Van Vlierberghe, Sandra</creatorcontrib><description>Poly(ɛ-caprolactone) (PCL) is a biocompatible, biodegradable, and highly mechanically resilient FDA-approved material (for specific biomedical applications, e.g. as drug delivery devices, in sutures, or as an adhesion barrier), rendering it a promising candidate to serve bone tissue engineering. However, in vivo monitoring of PCL-based implants, as well as biodegradable implants in general, and their degradation profiles pose a significant challenge, hindering further development in the tissue engineering field and subsequent clinical adoption. To address this, photo-cross-linkable mechanically resilient PCL networks are developed and functionalized with a radiopaque monomer, 5-acrylamido-2,4,6-triiodoisophthalic acid (AATIPA), to enable non-destructive in vivo monitoring of PCL-based implants. The covalent incorporation of AATIPA into the crosslinked PCL networks does not significantly affect their crosslinking kinetics, mechanical properties, or thermal properties, but it increases their hydrolysis rate and radiopacity. Complex and porous 3D designs of radiopaque PCL networks can be effectively monitored in vivo. This work paves the way toward non-invasive monitoring of in vivo degradation profiles and early detection of potential implant malfunctions.</description><identifier>ISSN: 2192-2640</identifier><identifier>ISSN: 2192-2659</identifier><identifier>EISSN: 2192-2659</identifier><identifier>DOI: 10.1002/adhm.202402256</identifier><identifier>PMID: 39558788</identifier><language>eng</language><publisher>Germany</publisher><ispartof>Advanced healthcare materials, 2024-11, p.e2402256</ispartof><rights>2024 Wiley‐VCH GmbH.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c220t-ea665e8b4200ec75bc6891cd37f8abcd8795e8af0b6fe66fee7eeb188901422e3</cites><orcidid>0000-0001-7688-1682 ; 0000-0002-8874-8632</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39558788$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kolouchova, Kristyna</creatorcontrib><creatorcontrib>Thijssen, Quinten</creatorcontrib><creatorcontrib>Groborz, Ondrej</creatorcontrib><creatorcontrib>Van Damme, Lana</creatorcontrib><creatorcontrib>Humajova, Jana</creatorcontrib><creatorcontrib>Matous, Petr</creatorcontrib><creatorcontrib>Quaak, Astrid</creatorcontrib><creatorcontrib>Dusa, Martin</creatorcontrib><creatorcontrib>Kucka, Jan</creatorcontrib><creatorcontrib>Sefc, Ludek</creatorcontrib><creatorcontrib>Hruby, Martin</creatorcontrib><creatorcontrib>Van Vlierberghe, Sandra</creatorcontrib><title>Next-Gen Poly(ε-Caprolactone) Scaffolds: Non-Destructive In Vivo Monitoring and Accelerated Biodegradation</title><title>Advanced healthcare materials</title><addtitle>Adv Healthc Mater</addtitle><description>Poly(ɛ-caprolactone) (PCL) is a biocompatible, biodegradable, and highly mechanically resilient FDA-approved material (for specific biomedical applications, e.g. as drug delivery devices, in sutures, or as an adhesion barrier), rendering it a promising candidate to serve bone tissue engineering. However, in vivo monitoring of PCL-based implants, as well as biodegradable implants in general, and their degradation profiles pose a significant challenge, hindering further development in the tissue engineering field and subsequent clinical adoption. To address this, photo-cross-linkable mechanically resilient PCL networks are developed and functionalized with a radiopaque monomer, 5-acrylamido-2,4,6-triiodoisophthalic acid (AATIPA), to enable non-destructive in vivo monitoring of PCL-based implants. The covalent incorporation of AATIPA into the crosslinked PCL networks does not significantly affect their crosslinking kinetics, mechanical properties, or thermal properties, but it increases their hydrolysis rate and radiopacity. Complex and porous 3D designs of radiopaque PCL networks can be effectively monitored in vivo. This work paves the way toward non-invasive monitoring of in vivo degradation profiles and early detection of potential implant malfunctions.</description><issn>2192-2640</issn><issn>2192-2659</issn><issn>2192-2659</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kM9OwzAMxiMEYtPYlSPKcRw6krRNU25jwJg0BhJ_rlWauKPQJSNpJ_ZgvAbPRCfGLFm25M-f7B9Cp5QMKSHsQuq35ZARFhHGYn6AuoymLGA8Tg_3fUQ6qO_9O2mDx5QLeow6YRrHIhGiiz7m8FUHEzD40Vabwc93MJYrZyupamvgHD8pWRS20v4Sz60JrsHXrlF1uQY8Nfi1XFt8b01ZW1eaBZZG45FSUIGTNWh8VVoNCye1rEtrTtBRISsP_V3toZfbm-fxXTB7mEzHo1mgGCN1AJLzGEQeMUJAJXGuuEip0mFSCJkrLZK0HcuC5LwA3iYkADkVIiU0YgzCHhr8-baPfDbtxdmy9O1RlTRgG5-FNCSMJHGUtNLhn1Q5672DIlu5cindJqMk2zLOtoyzPeN24Wzn3eRL0Hv5P9HwF3-LeTY</recordid><startdate>20241119</startdate><enddate>20241119</enddate><creator>Kolouchova, Kristyna</creator><creator>Thijssen, Quinten</creator><creator>Groborz, Ondrej</creator><creator>Van Damme, Lana</creator><creator>Humajova, Jana</creator><creator>Matous, Petr</creator><creator>Quaak, Astrid</creator><creator>Dusa, Martin</creator><creator>Kucka, Jan</creator><creator>Sefc, Ludek</creator><creator>Hruby, Martin</creator><creator>Van Vlierberghe, Sandra</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7688-1682</orcidid><orcidid>https://orcid.org/0000-0002-8874-8632</orcidid></search><sort><creationdate>20241119</creationdate><title>Next-Gen Poly(ε-Caprolactone) Scaffolds: Non-Destructive In Vivo Monitoring and Accelerated Biodegradation</title><author>Kolouchova, Kristyna ; Thijssen, Quinten ; Groborz, Ondrej ; Van Damme, Lana ; Humajova, Jana ; Matous, Petr ; Quaak, Astrid ; Dusa, Martin ; Kucka, Jan ; Sefc, Ludek ; Hruby, Martin ; Van Vlierberghe, Sandra</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c220t-ea665e8b4200ec75bc6891cd37f8abcd8795e8af0b6fe66fee7eeb188901422e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kolouchova, Kristyna</creatorcontrib><creatorcontrib>Thijssen, Quinten</creatorcontrib><creatorcontrib>Groborz, Ondrej</creatorcontrib><creatorcontrib>Van Damme, Lana</creatorcontrib><creatorcontrib>Humajova, Jana</creatorcontrib><creatorcontrib>Matous, Petr</creatorcontrib><creatorcontrib>Quaak, Astrid</creatorcontrib><creatorcontrib>Dusa, Martin</creatorcontrib><creatorcontrib>Kucka, Jan</creatorcontrib><creatorcontrib>Sefc, Ludek</creatorcontrib><creatorcontrib>Hruby, Martin</creatorcontrib><creatorcontrib>Van Vlierberghe, Sandra</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced healthcare materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kolouchova, Kristyna</au><au>Thijssen, Quinten</au><au>Groborz, Ondrej</au><au>Van Damme, Lana</au><au>Humajova, Jana</au><au>Matous, Petr</au><au>Quaak, Astrid</au><au>Dusa, Martin</au><au>Kucka, Jan</au><au>Sefc, Ludek</au><au>Hruby, Martin</au><au>Van Vlierberghe, Sandra</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Next-Gen Poly(ε-Caprolactone) Scaffolds: Non-Destructive In Vivo Monitoring and Accelerated Biodegradation</atitle><jtitle>Advanced healthcare materials</jtitle><addtitle>Adv Healthc Mater</addtitle><date>2024-11-19</date><risdate>2024</risdate><spage>e2402256</spage><pages>e2402256-</pages><issn>2192-2640</issn><issn>2192-2659</issn><eissn>2192-2659</eissn><abstract>Poly(ɛ-caprolactone) (PCL) is a biocompatible, biodegradable, and highly mechanically resilient FDA-approved material (for specific biomedical applications, e.g. as drug delivery devices, in sutures, or as an adhesion barrier), rendering it a promising candidate to serve bone tissue engineering. However, in vivo monitoring of PCL-based implants, as well as biodegradable implants in general, and their degradation profiles pose a significant challenge, hindering further development in the tissue engineering field and subsequent clinical adoption. To address this, photo-cross-linkable mechanically resilient PCL networks are developed and functionalized with a radiopaque monomer, 5-acrylamido-2,4,6-triiodoisophthalic acid (AATIPA), to enable non-destructive in vivo monitoring of PCL-based implants. The covalent incorporation of AATIPA into the crosslinked PCL networks does not significantly affect their crosslinking kinetics, mechanical properties, or thermal properties, but it increases their hydrolysis rate and radiopacity. Complex and porous 3D designs of radiopaque PCL networks can be effectively monitored in vivo. This work paves the way toward non-invasive monitoring of in vivo degradation profiles and early detection of potential implant malfunctions.</abstract><cop>Germany</cop><pmid>39558788</pmid><doi>10.1002/adhm.202402256</doi><orcidid>https://orcid.org/0000-0001-7688-1682</orcidid><orcidid>https://orcid.org/0000-0002-8874-8632</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2192-2640
ispartof Advanced healthcare materials, 2024-11, p.e2402256
issn 2192-2640
2192-2659
2192-2659
language eng
recordid cdi_proquest_miscellaneous_3130207547
source Wiley-Blackwell Read & Publish Collection
title Next-Gen Poly(ε-Caprolactone) Scaffolds: Non-Destructive In Vivo Monitoring and Accelerated Biodegradation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T21%3A03%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Next-Gen%20Poly(%CE%B5-Caprolactone)%20Scaffolds:%20Non-Destructive%20In%20Vivo%20Monitoring%20and%20Accelerated%20Biodegradation&rft.jtitle=Advanced%20healthcare%20materials&rft.au=Kolouchova,%20Kristyna&rft.date=2024-11-19&rft.spage=e2402256&rft.pages=e2402256-&rft.issn=2192-2640&rft.eissn=2192-2659&rft_id=info:doi/10.1002/adhm.202402256&rft_dat=%3Cproquest_cross%3E3130207547%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c220t-ea665e8b4200ec75bc6891cd37f8abcd8795e8af0b6fe66fee7eeb188901422e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3130207547&rft_id=info:pmid/39558788&rfr_iscdi=true