Loading…
Next-Gen Poly(ε-Caprolactone) Scaffolds: Non-Destructive In Vivo Monitoring and Accelerated Biodegradation
Poly(ɛ-caprolactone) (PCL) is a biocompatible, biodegradable, and highly mechanically resilient FDA-approved material (for specific biomedical applications, e.g. as drug delivery devices, in sutures, or as an adhesion barrier), rendering it a promising candidate to serve bone tissue engineering. How...
Saved in:
Published in: | Advanced healthcare materials 2024-11, p.e2402256 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c220t-ea665e8b4200ec75bc6891cd37f8abcd8795e8af0b6fe66fee7eeb188901422e3 |
container_end_page | |
container_issue | |
container_start_page | e2402256 |
container_title | Advanced healthcare materials |
container_volume | |
creator | Kolouchova, Kristyna Thijssen, Quinten Groborz, Ondrej Van Damme, Lana Humajova, Jana Matous, Petr Quaak, Astrid Dusa, Martin Kucka, Jan Sefc, Ludek Hruby, Martin Van Vlierberghe, Sandra |
description | Poly(ɛ-caprolactone) (PCL) is a biocompatible, biodegradable, and highly mechanically resilient FDA-approved material (for specific biomedical applications, e.g. as drug delivery devices, in sutures, or as an adhesion barrier), rendering it a promising candidate to serve bone tissue engineering. However, in vivo monitoring of PCL-based implants, as well as biodegradable implants in general, and their degradation profiles pose a significant challenge, hindering further development in the tissue engineering field and subsequent clinical adoption. To address this, photo-cross-linkable mechanically resilient PCL networks are developed and functionalized with a radiopaque monomer, 5-acrylamido-2,4,6-triiodoisophthalic acid (AATIPA), to enable non-destructive in vivo monitoring of PCL-based implants. The covalent incorporation of AATIPA into the crosslinked PCL networks does not significantly affect their crosslinking kinetics, mechanical properties, or thermal properties, but it increases their hydrolysis rate and radiopacity. Complex and porous 3D designs of radiopaque PCL networks can be effectively monitored in vivo. This work paves the way toward non-invasive monitoring of in vivo degradation profiles and early detection of potential implant malfunctions. |
doi_str_mv | 10.1002/adhm.202402256 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3130207547</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3130207547</sourcerecordid><originalsourceid>FETCH-LOGICAL-c220t-ea665e8b4200ec75bc6891cd37f8abcd8795e8af0b6fe66fee7eeb188901422e3</originalsourceid><addsrcrecordid>eNo9kM9OwzAMxiMEYtPYlSPKcRw6krRNU25jwJg0BhJ_rlWauKPQJSNpJ_ZgvAbPRCfGLFm25M-f7B9Cp5QMKSHsQuq35ZARFhHGYn6AuoymLGA8Tg_3fUQ6qO_9O2mDx5QLeow6YRrHIhGiiz7m8FUHEzD40Vabwc93MJYrZyupamvgHD8pWRS20v4Sz60JrsHXrlF1uQY8Nfi1XFt8b01ZW1eaBZZG45FSUIGTNWh8VVoNCye1rEtrTtBRISsP_V3toZfbm-fxXTB7mEzHo1mgGCN1AJLzGEQeMUJAJXGuuEip0mFSCJkrLZK0HcuC5LwA3iYkADkVIiU0YgzCHhr8-baPfDbtxdmy9O1RlTRgG5-FNCSMJHGUtNLhn1Q5672DIlu5cindJqMk2zLOtoyzPeN24Wzn3eRL0Hv5P9HwF3-LeTY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3130207547</pqid></control><display><type>article</type><title>Next-Gen Poly(ε-Caprolactone) Scaffolds: Non-Destructive In Vivo Monitoring and Accelerated Biodegradation</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Kolouchova, Kristyna ; Thijssen, Quinten ; Groborz, Ondrej ; Van Damme, Lana ; Humajova, Jana ; Matous, Petr ; Quaak, Astrid ; Dusa, Martin ; Kucka, Jan ; Sefc, Ludek ; Hruby, Martin ; Van Vlierberghe, Sandra</creator><creatorcontrib>Kolouchova, Kristyna ; Thijssen, Quinten ; Groborz, Ondrej ; Van Damme, Lana ; Humajova, Jana ; Matous, Petr ; Quaak, Astrid ; Dusa, Martin ; Kucka, Jan ; Sefc, Ludek ; Hruby, Martin ; Van Vlierberghe, Sandra</creatorcontrib><description>Poly(ɛ-caprolactone) (PCL) is a biocompatible, biodegradable, and highly mechanically resilient FDA-approved material (for specific biomedical applications, e.g. as drug delivery devices, in sutures, or as an adhesion barrier), rendering it a promising candidate to serve bone tissue engineering. However, in vivo monitoring of PCL-based implants, as well as biodegradable implants in general, and their degradation profiles pose a significant challenge, hindering further development in the tissue engineering field and subsequent clinical adoption. To address this, photo-cross-linkable mechanically resilient PCL networks are developed and functionalized with a radiopaque monomer, 5-acrylamido-2,4,6-triiodoisophthalic acid (AATIPA), to enable non-destructive in vivo monitoring of PCL-based implants. The covalent incorporation of AATIPA into the crosslinked PCL networks does not significantly affect their crosslinking kinetics, mechanical properties, or thermal properties, but it increases their hydrolysis rate and radiopacity. Complex and porous 3D designs of radiopaque PCL networks can be effectively monitored in vivo. This work paves the way toward non-invasive monitoring of in vivo degradation profiles and early detection of potential implant malfunctions.</description><identifier>ISSN: 2192-2640</identifier><identifier>ISSN: 2192-2659</identifier><identifier>EISSN: 2192-2659</identifier><identifier>DOI: 10.1002/adhm.202402256</identifier><identifier>PMID: 39558788</identifier><language>eng</language><publisher>Germany</publisher><ispartof>Advanced healthcare materials, 2024-11, p.e2402256</ispartof><rights>2024 Wiley‐VCH GmbH.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c220t-ea665e8b4200ec75bc6891cd37f8abcd8795e8af0b6fe66fee7eeb188901422e3</cites><orcidid>0000-0001-7688-1682 ; 0000-0002-8874-8632</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39558788$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kolouchova, Kristyna</creatorcontrib><creatorcontrib>Thijssen, Quinten</creatorcontrib><creatorcontrib>Groborz, Ondrej</creatorcontrib><creatorcontrib>Van Damme, Lana</creatorcontrib><creatorcontrib>Humajova, Jana</creatorcontrib><creatorcontrib>Matous, Petr</creatorcontrib><creatorcontrib>Quaak, Astrid</creatorcontrib><creatorcontrib>Dusa, Martin</creatorcontrib><creatorcontrib>Kucka, Jan</creatorcontrib><creatorcontrib>Sefc, Ludek</creatorcontrib><creatorcontrib>Hruby, Martin</creatorcontrib><creatorcontrib>Van Vlierberghe, Sandra</creatorcontrib><title>Next-Gen Poly(ε-Caprolactone) Scaffolds: Non-Destructive In Vivo Monitoring and Accelerated Biodegradation</title><title>Advanced healthcare materials</title><addtitle>Adv Healthc Mater</addtitle><description>Poly(ɛ-caprolactone) (PCL) is a biocompatible, biodegradable, and highly mechanically resilient FDA-approved material (for specific biomedical applications, e.g. as drug delivery devices, in sutures, or as an adhesion barrier), rendering it a promising candidate to serve bone tissue engineering. However, in vivo monitoring of PCL-based implants, as well as biodegradable implants in general, and their degradation profiles pose a significant challenge, hindering further development in the tissue engineering field and subsequent clinical adoption. To address this, photo-cross-linkable mechanically resilient PCL networks are developed and functionalized with a radiopaque monomer, 5-acrylamido-2,4,6-triiodoisophthalic acid (AATIPA), to enable non-destructive in vivo monitoring of PCL-based implants. The covalent incorporation of AATIPA into the crosslinked PCL networks does not significantly affect their crosslinking kinetics, mechanical properties, or thermal properties, but it increases their hydrolysis rate and radiopacity. Complex and porous 3D designs of radiopaque PCL networks can be effectively monitored in vivo. This work paves the way toward non-invasive monitoring of in vivo degradation profiles and early detection of potential implant malfunctions.</description><issn>2192-2640</issn><issn>2192-2659</issn><issn>2192-2659</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kM9OwzAMxiMEYtPYlSPKcRw6krRNU25jwJg0BhJ_rlWauKPQJSNpJ_ZgvAbPRCfGLFm25M-f7B9Cp5QMKSHsQuq35ZARFhHGYn6AuoymLGA8Tg_3fUQ6qO_9O2mDx5QLeow6YRrHIhGiiz7m8FUHEzD40Vabwc93MJYrZyupamvgHD8pWRS20v4Sz60JrsHXrlF1uQY8Nfi1XFt8b01ZW1eaBZZG45FSUIGTNWh8VVoNCye1rEtrTtBRISsP_V3toZfbm-fxXTB7mEzHo1mgGCN1AJLzGEQeMUJAJXGuuEip0mFSCJkrLZK0HcuC5LwA3iYkADkVIiU0YgzCHhr8-baPfDbtxdmy9O1RlTRgG5-FNCSMJHGUtNLhn1Q5672DIlu5cindJqMk2zLOtoyzPeN24Wzn3eRL0Hv5P9HwF3-LeTY</recordid><startdate>20241119</startdate><enddate>20241119</enddate><creator>Kolouchova, Kristyna</creator><creator>Thijssen, Quinten</creator><creator>Groborz, Ondrej</creator><creator>Van Damme, Lana</creator><creator>Humajova, Jana</creator><creator>Matous, Petr</creator><creator>Quaak, Astrid</creator><creator>Dusa, Martin</creator><creator>Kucka, Jan</creator><creator>Sefc, Ludek</creator><creator>Hruby, Martin</creator><creator>Van Vlierberghe, Sandra</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7688-1682</orcidid><orcidid>https://orcid.org/0000-0002-8874-8632</orcidid></search><sort><creationdate>20241119</creationdate><title>Next-Gen Poly(ε-Caprolactone) Scaffolds: Non-Destructive In Vivo Monitoring and Accelerated Biodegradation</title><author>Kolouchova, Kristyna ; Thijssen, Quinten ; Groborz, Ondrej ; Van Damme, Lana ; Humajova, Jana ; Matous, Petr ; Quaak, Astrid ; Dusa, Martin ; Kucka, Jan ; Sefc, Ludek ; Hruby, Martin ; Van Vlierberghe, Sandra</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c220t-ea665e8b4200ec75bc6891cd37f8abcd8795e8af0b6fe66fee7eeb188901422e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kolouchova, Kristyna</creatorcontrib><creatorcontrib>Thijssen, Quinten</creatorcontrib><creatorcontrib>Groborz, Ondrej</creatorcontrib><creatorcontrib>Van Damme, Lana</creatorcontrib><creatorcontrib>Humajova, Jana</creatorcontrib><creatorcontrib>Matous, Petr</creatorcontrib><creatorcontrib>Quaak, Astrid</creatorcontrib><creatorcontrib>Dusa, Martin</creatorcontrib><creatorcontrib>Kucka, Jan</creatorcontrib><creatorcontrib>Sefc, Ludek</creatorcontrib><creatorcontrib>Hruby, Martin</creatorcontrib><creatorcontrib>Van Vlierberghe, Sandra</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced healthcare materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kolouchova, Kristyna</au><au>Thijssen, Quinten</au><au>Groborz, Ondrej</au><au>Van Damme, Lana</au><au>Humajova, Jana</au><au>Matous, Petr</au><au>Quaak, Astrid</au><au>Dusa, Martin</au><au>Kucka, Jan</au><au>Sefc, Ludek</au><au>Hruby, Martin</au><au>Van Vlierberghe, Sandra</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Next-Gen Poly(ε-Caprolactone) Scaffolds: Non-Destructive In Vivo Monitoring and Accelerated Biodegradation</atitle><jtitle>Advanced healthcare materials</jtitle><addtitle>Adv Healthc Mater</addtitle><date>2024-11-19</date><risdate>2024</risdate><spage>e2402256</spage><pages>e2402256-</pages><issn>2192-2640</issn><issn>2192-2659</issn><eissn>2192-2659</eissn><abstract>Poly(ɛ-caprolactone) (PCL) is a biocompatible, biodegradable, and highly mechanically resilient FDA-approved material (for specific biomedical applications, e.g. as drug delivery devices, in sutures, or as an adhesion barrier), rendering it a promising candidate to serve bone tissue engineering. However, in vivo monitoring of PCL-based implants, as well as biodegradable implants in general, and their degradation profiles pose a significant challenge, hindering further development in the tissue engineering field and subsequent clinical adoption. To address this, photo-cross-linkable mechanically resilient PCL networks are developed and functionalized with a radiopaque monomer, 5-acrylamido-2,4,6-triiodoisophthalic acid (AATIPA), to enable non-destructive in vivo monitoring of PCL-based implants. The covalent incorporation of AATIPA into the crosslinked PCL networks does not significantly affect their crosslinking kinetics, mechanical properties, or thermal properties, but it increases their hydrolysis rate and radiopacity. Complex and porous 3D designs of radiopaque PCL networks can be effectively monitored in vivo. This work paves the way toward non-invasive monitoring of in vivo degradation profiles and early detection of potential implant malfunctions.</abstract><cop>Germany</cop><pmid>39558788</pmid><doi>10.1002/adhm.202402256</doi><orcidid>https://orcid.org/0000-0001-7688-1682</orcidid><orcidid>https://orcid.org/0000-0002-8874-8632</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2192-2640 |
ispartof | Advanced healthcare materials, 2024-11, p.e2402256 |
issn | 2192-2640 2192-2659 2192-2659 |
language | eng |
recordid | cdi_proquest_miscellaneous_3130207547 |
source | Wiley-Blackwell Read & Publish Collection |
title | Next-Gen Poly(ε-Caprolactone) Scaffolds: Non-Destructive In Vivo Monitoring and Accelerated Biodegradation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T21%3A03%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Next-Gen%20Poly(%CE%B5-Caprolactone)%20Scaffolds:%20Non-Destructive%20In%20Vivo%20Monitoring%20and%20Accelerated%20Biodegradation&rft.jtitle=Advanced%20healthcare%20materials&rft.au=Kolouchova,%20Kristyna&rft.date=2024-11-19&rft.spage=e2402256&rft.pages=e2402256-&rft.issn=2192-2640&rft.eissn=2192-2659&rft_id=info:doi/10.1002/adhm.202402256&rft_dat=%3Cproquest_cross%3E3130207547%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c220t-ea665e8b4200ec75bc6891cd37f8abcd8795e8af0b6fe66fee7eeb188901422e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3130207547&rft_id=info:pmid/39558788&rfr_iscdi=true |