Loading…

Identification and characterization of a rice expansin-like protein with metal-binding properties

Heavy metal (HM) contamination poses significant threat to agricultural productivity. This study identified and characterized Os09g29690 (OsELP), a rice expansin-like protein. We demonstrated OsELP localizes to the cell wall and is upregulated under various abiotic stresses. Sequence analysis reveal...

Full description

Saved in:
Bibliographic Details
Published in:International journal of biological macromolecules 2024-12, Vol.283 (Pt 2), p.137791, Article 137791
Main Authors: Chawda, Khushboo, Indoliya, Yuvraj, Siddique, Waseem, Gautam, Neelam, Chakrabarty, Debasis
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Heavy metal (HM) contamination poses significant threat to agricultural productivity. This study identified and characterized Os09g29690 (OsELP), a rice expansin-like protein. We demonstrated OsELP localizes to the cell wall and is upregulated under various abiotic stresses. Sequence analysis revealed a potential metal-binding CXXXC motif in its conserved domain. Heterologous expression of OsELP in yeast mutants (Δacr3 and Δycf1) enhanced metal tolerance under arsenate [As(V)], arsenite [As(III)], and cadmium [Cd] stress. Yeast cells expressing OsELP accumulated higher amounts of As and Cd, suggesting a potential metal-binding mechanism. This was confirmed through site-directed mutagenesis on the conserved cysteine and serine residues within OsELP. Mutants lacking cysteine residues (mutCS) reduced tolerance to As(III) and Cd but enhanced tolerance to As(V), indicating a role of cysteine in As(III) and Cd binding. Conversely, mutants lacking serine residues (mutSA) reduced tolerance to As(V), suggesting serine's involvement in As(V) binding. These findings reveal the roles of cysteine and serine residues in mediating HM tolerance and binding, confirming OsELP as a key player in HM detoxification through cell wall localization and chelation. This study provides novel insights into the molecular mechanisms of HM tolerance in plants, with potential applications in developing crops with enhanced resistance to HM toxicity.
ISSN:0141-8130
1879-0003
1879-0003
DOI:10.1016/j.ijbiomac.2024.137791