Loading…

Dynamic modelling of signalling pathways when ordinary differential equations are not feasible

Mathematical modelling plays a crucial role in understanding inter- and intracellular signalling processes. Currently, ordinary differential equations (ODEs) are the predominant approach in systems biology for modelling such pathways. While ODE models offer mechanistic interpretability, they also su...

Full description

Saved in:
Bibliographic Details
Published in:Bioinformatics (Oxford, England) England), 2024-11, Vol.40 (12)
Main Authors: Rachel, Timo, Brombacher, Eva, Wöhrle, Svenja, Groß, Olaf, Kreutz, Clemens
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c244t-33447f0b80bdef2d1fe13331d00a4e5d2a7e010887546493766e41aee8bfc2733
container_end_page
container_issue 12
container_start_page
container_title Bioinformatics (Oxford, England)
container_volume 40
creator Rachel, Timo
Brombacher, Eva
Wöhrle, Svenja
Groß, Olaf
Kreutz, Clemens
description Mathematical modelling plays a crucial role in understanding inter- and intracellular signalling processes. Currently, ordinary differential equations (ODEs) are the predominant approach in systems biology for modelling such pathways. While ODE models offer mechanistic interpretability, they also suffer from limitations, including the need to consider all relevant compounds, resulting in large models difficult to handle numerically and requiring extensive data. In previous work, we introduced the retarded transient function (RTF) as an alternative method for modelling temporal responses of signalling pathways. Here, we extend the RTF approach to integrate concentration or dose-dependencies into the modelling of dynamics. With this advancement, RTF modelling now fully encompasses the application range of ODE models, which comprises predictions in both time and concentration domains. Moreover, characterizing dose-dependencies provides an intuitive way to investigate and characterize signalling differences between biological conditions or cell types based on their response to stimulating inputs. To demonstrate the applicability of our extended approach, we employ data from time- and dose-dependent inflammasome activation in bone marrow-derived macrophages treated with nigericin sodium salt. Our results show the effectiveness of the extended RTF approach as a generic framework for modelling dose-dependent kinetics in cellular signalling. The approach results in intuitively interpretable parameters that describe signal dynamics and enables predictive modelling of time- and dose-dependencies even if only individual cellular components are quantified. The presented approach is available within the MATLAB-based Data2Dynamics modelling toolbox at https://github.com/Data2Dynamics and https://zenodo.org/records/14008247 and as R code at https://github.com/kreutz-lab/RTF.
doi_str_mv 10.1093/bioinformatics/btae683
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_3130208753</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3130208753</sourcerecordid><originalsourceid>FETCH-LOGICAL-c244t-33447f0b80bdef2d1fe13331d00a4e5d2a7e010887546493766e41aee8bfc2733</originalsourceid><addsrcrecordid>eNpVkU1PwzAMhiMEYnz9hSlHLoOkSZv2hBDfEhIXuBK5jbMFtclIWqb9e4o20DjZlu3Xj_wSMuXsgrNKXNYuOG9D7KB3Tbqse8CiFHvkiItCzWTJ-f5OPiHHKX0wxnKWF4dkIqo8L3NVHZH327WHzjW0Cwbb1vk5DZYmN_ewqZbQL1awTnS1QE9DNM5DXFPjrMWIvnfQUvwcRozgE4WI1IeeWoTk6hZPyYGFNuHZNp6Qt_u715vH2fPLw9PN9fOsyaTsZ0JIqSyrS1YbtJnhFrkQghvGQGJuMlDIOCtLlctCVkIVBUoOiGVtm0wJcUKuNrrLoe7QNCNYhFYvo-tGWh3A6f8d7xZ6Hr4050VWKaZGhfOtQgyfA6Zedy4140vAYxiSFlywjI0AP8eKzWgTQ0oR7d8dzvSPO_q_O3rrzrg43aX8W_u1Q3wDraaUaw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3130208753</pqid></control><display><type>article</type><title>Dynamic modelling of signalling pathways when ordinary differential equations are not feasible</title><source>PubMed (Medline)</source><source>Oxford Open Access Journals</source><creator>Rachel, Timo ; Brombacher, Eva ; Wöhrle, Svenja ; Groß, Olaf ; Kreutz, Clemens</creator><contributor>Mathelier, Anthony</contributor><creatorcontrib>Rachel, Timo ; Brombacher, Eva ; Wöhrle, Svenja ; Groß, Olaf ; Kreutz, Clemens ; Mathelier, Anthony</creatorcontrib><description>Mathematical modelling plays a crucial role in understanding inter- and intracellular signalling processes. Currently, ordinary differential equations (ODEs) are the predominant approach in systems biology for modelling such pathways. While ODE models offer mechanistic interpretability, they also suffer from limitations, including the need to consider all relevant compounds, resulting in large models difficult to handle numerically and requiring extensive data. In previous work, we introduced the retarded transient function (RTF) as an alternative method for modelling temporal responses of signalling pathways. Here, we extend the RTF approach to integrate concentration or dose-dependencies into the modelling of dynamics. With this advancement, RTF modelling now fully encompasses the application range of ODE models, which comprises predictions in both time and concentration domains. Moreover, characterizing dose-dependencies provides an intuitive way to investigate and characterize signalling differences between biological conditions or cell types based on their response to stimulating inputs. To demonstrate the applicability of our extended approach, we employ data from time- and dose-dependent inflammasome activation in bone marrow-derived macrophages treated with nigericin sodium salt. Our results show the effectiveness of the extended RTF approach as a generic framework for modelling dose-dependent kinetics in cellular signalling. The approach results in intuitively interpretable parameters that describe signal dynamics and enables predictive modelling of time- and dose-dependencies even if only individual cellular components are quantified. The presented approach is available within the MATLAB-based Data2Dynamics modelling toolbox at https://github.com/Data2Dynamics and https://zenodo.org/records/14008247 and as R code at https://github.com/kreutz-lab/RTF.</description><identifier>ISSN: 1367-4811</identifier><identifier>ISSN: 1367-4803</identifier><identifier>EISSN: 1367-4811</identifier><identifier>DOI: 10.1093/bioinformatics/btae683</identifier><identifier>PMID: 39558579</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Algorithms ; Animals ; Macrophages - metabolism ; Models, Biological ; Original Paper ; Signal Transduction ; Systems Biology - methods</subject><ispartof>Bioinformatics (Oxford, England), 2024-11, Vol.40 (12)</ispartof><rights>The Author(s) 2024. Published by Oxford University Press.</rights><rights>The Author(s) 2024. Published by Oxford University Press. 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c244t-33447f0b80bdef2d1fe13331d00a4e5d2a7e010887546493766e41aee8bfc2733</cites><orcidid>0000-0001-8660-3619 ; 0000-0002-3836-1077 ; 0000-0002-5488-0985 ; 0000-0002-8796-5766 ; 0009-0004-0790-2864</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11629707/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11629707/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39558579$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Mathelier, Anthony</contributor><creatorcontrib>Rachel, Timo</creatorcontrib><creatorcontrib>Brombacher, Eva</creatorcontrib><creatorcontrib>Wöhrle, Svenja</creatorcontrib><creatorcontrib>Groß, Olaf</creatorcontrib><creatorcontrib>Kreutz, Clemens</creatorcontrib><title>Dynamic modelling of signalling pathways when ordinary differential equations are not feasible</title><title>Bioinformatics (Oxford, England)</title><addtitle>Bioinformatics</addtitle><description>Mathematical modelling plays a crucial role in understanding inter- and intracellular signalling processes. Currently, ordinary differential equations (ODEs) are the predominant approach in systems biology for modelling such pathways. While ODE models offer mechanistic interpretability, they also suffer from limitations, including the need to consider all relevant compounds, resulting in large models difficult to handle numerically and requiring extensive data. In previous work, we introduced the retarded transient function (RTF) as an alternative method for modelling temporal responses of signalling pathways. Here, we extend the RTF approach to integrate concentration or dose-dependencies into the modelling of dynamics. With this advancement, RTF modelling now fully encompasses the application range of ODE models, which comprises predictions in both time and concentration domains. Moreover, characterizing dose-dependencies provides an intuitive way to investigate and characterize signalling differences between biological conditions or cell types based on their response to stimulating inputs. To demonstrate the applicability of our extended approach, we employ data from time- and dose-dependent inflammasome activation in bone marrow-derived macrophages treated with nigericin sodium salt. Our results show the effectiveness of the extended RTF approach as a generic framework for modelling dose-dependent kinetics in cellular signalling. The approach results in intuitively interpretable parameters that describe signal dynamics and enables predictive modelling of time- and dose-dependencies even if only individual cellular components are quantified. The presented approach is available within the MATLAB-based Data2Dynamics modelling toolbox at https://github.com/Data2Dynamics and https://zenodo.org/records/14008247 and as R code at https://github.com/kreutz-lab/RTF.</description><subject>Algorithms</subject><subject>Animals</subject><subject>Macrophages - metabolism</subject><subject>Models, Biological</subject><subject>Original Paper</subject><subject>Signal Transduction</subject><subject>Systems Biology - methods</subject><issn>1367-4811</issn><issn>1367-4803</issn><issn>1367-4811</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpVkU1PwzAMhiMEYnz9hSlHLoOkSZv2hBDfEhIXuBK5jbMFtclIWqb9e4o20DjZlu3Xj_wSMuXsgrNKXNYuOG9D7KB3Tbqse8CiFHvkiItCzWTJ-f5OPiHHKX0wxnKWF4dkIqo8L3NVHZH327WHzjW0Cwbb1vk5DZYmN_ewqZbQL1awTnS1QE9DNM5DXFPjrMWIvnfQUvwcRozgE4WI1IeeWoTk6hZPyYGFNuHZNp6Qt_u715vH2fPLw9PN9fOsyaTsZ0JIqSyrS1YbtJnhFrkQghvGQGJuMlDIOCtLlctCVkIVBUoOiGVtm0wJcUKuNrrLoe7QNCNYhFYvo-tGWh3A6f8d7xZ6Hr4050VWKaZGhfOtQgyfA6Zedy4140vAYxiSFlywjI0AP8eKzWgTQ0oR7d8dzvSPO_q_O3rrzrg43aX8W_u1Q3wDraaUaw</recordid><startdate>20241128</startdate><enddate>20241128</enddate><creator>Rachel, Timo</creator><creator>Brombacher, Eva</creator><creator>Wöhrle, Svenja</creator><creator>Groß, Olaf</creator><creator>Kreutz, Clemens</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8660-3619</orcidid><orcidid>https://orcid.org/0000-0002-3836-1077</orcidid><orcidid>https://orcid.org/0000-0002-5488-0985</orcidid><orcidid>https://orcid.org/0000-0002-8796-5766</orcidid><orcidid>https://orcid.org/0009-0004-0790-2864</orcidid></search><sort><creationdate>20241128</creationdate><title>Dynamic modelling of signalling pathways when ordinary differential equations are not feasible</title><author>Rachel, Timo ; Brombacher, Eva ; Wöhrle, Svenja ; Groß, Olaf ; Kreutz, Clemens</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c244t-33447f0b80bdef2d1fe13331d00a4e5d2a7e010887546493766e41aee8bfc2733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Animals</topic><topic>Macrophages - metabolism</topic><topic>Models, Biological</topic><topic>Original Paper</topic><topic>Signal Transduction</topic><topic>Systems Biology - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rachel, Timo</creatorcontrib><creatorcontrib>Brombacher, Eva</creatorcontrib><creatorcontrib>Wöhrle, Svenja</creatorcontrib><creatorcontrib>Groß, Olaf</creatorcontrib><creatorcontrib>Kreutz, Clemens</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Bioinformatics (Oxford, England)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rachel, Timo</au><au>Brombacher, Eva</au><au>Wöhrle, Svenja</au><au>Groß, Olaf</au><au>Kreutz, Clemens</au><au>Mathelier, Anthony</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic modelling of signalling pathways when ordinary differential equations are not feasible</atitle><jtitle>Bioinformatics (Oxford, England)</jtitle><addtitle>Bioinformatics</addtitle><date>2024-11-28</date><risdate>2024</risdate><volume>40</volume><issue>12</issue><issn>1367-4811</issn><issn>1367-4803</issn><eissn>1367-4811</eissn><abstract>Mathematical modelling plays a crucial role in understanding inter- and intracellular signalling processes. Currently, ordinary differential equations (ODEs) are the predominant approach in systems biology for modelling such pathways. While ODE models offer mechanistic interpretability, they also suffer from limitations, including the need to consider all relevant compounds, resulting in large models difficult to handle numerically and requiring extensive data. In previous work, we introduced the retarded transient function (RTF) as an alternative method for modelling temporal responses of signalling pathways. Here, we extend the RTF approach to integrate concentration or dose-dependencies into the modelling of dynamics. With this advancement, RTF modelling now fully encompasses the application range of ODE models, which comprises predictions in both time and concentration domains. Moreover, characterizing dose-dependencies provides an intuitive way to investigate and characterize signalling differences between biological conditions or cell types based on their response to stimulating inputs. To demonstrate the applicability of our extended approach, we employ data from time- and dose-dependent inflammasome activation in bone marrow-derived macrophages treated with nigericin sodium salt. Our results show the effectiveness of the extended RTF approach as a generic framework for modelling dose-dependent kinetics in cellular signalling. The approach results in intuitively interpretable parameters that describe signal dynamics and enables predictive modelling of time- and dose-dependencies even if only individual cellular components are quantified. The presented approach is available within the MATLAB-based Data2Dynamics modelling toolbox at https://github.com/Data2Dynamics and https://zenodo.org/records/14008247 and as R code at https://github.com/kreutz-lab/RTF.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>39558579</pmid><doi>10.1093/bioinformatics/btae683</doi><orcidid>https://orcid.org/0000-0001-8660-3619</orcidid><orcidid>https://orcid.org/0000-0002-3836-1077</orcidid><orcidid>https://orcid.org/0000-0002-5488-0985</orcidid><orcidid>https://orcid.org/0000-0002-8796-5766</orcidid><orcidid>https://orcid.org/0009-0004-0790-2864</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1367-4811
ispartof Bioinformatics (Oxford, England), 2024-11, Vol.40 (12)
issn 1367-4811
1367-4803
1367-4811
language eng
recordid cdi_proquest_miscellaneous_3130208753
source PubMed (Medline); Oxford Open Access Journals
subjects Algorithms
Animals
Macrophages - metabolism
Models, Biological
Original Paper
Signal Transduction
Systems Biology - methods
title Dynamic modelling of signalling pathways when ordinary differential equations are not feasible
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T23%3A23%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20modelling%20of%20signalling%20pathways%20when%20ordinary%20differential%20equations%20are%20not%20feasible&rft.jtitle=Bioinformatics%20(Oxford,%20England)&rft.au=Rachel,%20Timo&rft.date=2024-11-28&rft.volume=40&rft.issue=12&rft.issn=1367-4811&rft.eissn=1367-4811&rft_id=info:doi/10.1093/bioinformatics/btae683&rft_dat=%3Cproquest_pubme%3E3130208753%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c244t-33447f0b80bdef2d1fe13331d00a4e5d2a7e010887546493766e41aee8bfc2733%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3130208753&rft_id=info:pmid/39558579&rfr_iscdi=true