Loading…
Label-free localized surface plasmon resonance (LSPR) biosensor, based on Au-Ag NPs embedded in TiO2 matrix, for detection of Ochratoxin-A (OTA) in wine
Ochratoxin-A (OTA) is a widespread foodstuff contaminant with potential carcinogenic effects. Innovative sensing technologies that allow on-site and sensitive food screening can have a significant impact on food and environment safety. A novel and quantitative label-free LSPR-based biosensor was spe...
Saved in:
Published in: | Talanta (Oxford) 2025-03, Vol.284, p.127238, Article 127238 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Ochratoxin-A (OTA) is a widespread foodstuff contaminant with potential carcinogenic effects. Innovative sensing technologies that allow on-site and sensitive food screening can have a significant impact on food and environment safety. A novel and quantitative label-free LSPR-based biosensor was specifically designed for OTA detection, employing a portable LSPR spectroscopy sensing system for efficient on-site and cost-effective analysis. This biosensor is comprised of monoclonal anti-OTA antibodies immobilized on the surface of sputtered Au-Ag nanoparticles embedded in a TiO2 matrix. Under optimized conditions, the LSPR-based biosensor demonstrated a linear dynamic response from 0.05 to 2 ng mL−1, with an estimated limit of detection at 7 pg mL−1, using 55 μL of sample, outperforming commercial ELISA technique in relevant bioanalytical parameters. Sensitivity in OTA detection is crucial because it ensures the accurate identification of low concentrations, which is essential for preventing health risks associated to cumulative ingestion of contaminated food products. The robustness and feasibility of the presented LSPR-based biosensing was tested using spiked white wine, exhibiting a satisfactory recovery of 93 %–113 %, confirming its efficacy in a complex matrix.
[Display omitted]
•Label-free LSPR-based biosensor for on-site and cost-effective OTA detection.•LSPR transducer based on bimetallic Au-Ag nanoparticles dispersed in TiO2 matrix.•Scalable and reproducible nanoplasmonic films deposited by magnetron sputtering.•Biosensor's range (0.05–2 ng mL−1) covers established E.U. thresholds for foodstuffs.•Tested 55 μL spiked wine samples with 93 %–113 % recoveries. |
---|---|
ISSN: | 0039-9140 1873-3573 1873-3573 |
DOI: | 10.1016/j.talanta.2024.127238 |