Loading…

Room‐Temperature Formate Ester Transfer Hydrogenation Enables an Electrochemical/Thermal Organometallic Cascade for Methanol Synthesis from CO2

The reduction of CO2 to synthetic fuels is a valuable strategy for energy storage. However, the formation of energy‐dense liquid fuels such as methanol remains rare, particularly under low‐temperature and ‐pressure conditions that can be coupled to renewable electricity sources via electrochemistry....

Full description

Saved in:
Bibliographic Details
Published in:Angewandte Chemie International Edition 2024-11, p.e202416061
Main Authors: Fernández, Sergio, Assaf, Eric A., Ahmad, Shahbaz, Travis, Benjamin D., Curley, Julia B., Hazari, Nilay, Ertem, Mehmed Z., Miller, Alexander James Minden
Format: Article
Language:English
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page e202416061
container_title Angewandte Chemie International Edition
container_volume
creator Fernández, Sergio
Assaf, Eric A.
Ahmad, Shahbaz
Travis, Benjamin D.
Curley, Julia B.
Hazari, Nilay
Ertem, Mehmed Z.
Miller, Alexander James Minden
description The reduction of CO2 to synthetic fuels is a valuable strategy for energy storage. However, the formation of energy‐dense liquid fuels such as methanol remains rare, particularly under low‐temperature and ‐pressure conditions that can be coupled to renewable electricity sources via electrochemistry. Here, a multicatalyst system pairing an electrocatalyst with a thermal organometallic catalyst is introduced, which enables the reduction of CO2 to methanol at ambient temperature and pressure. The cascade methanol synthesis proceeds via CO2 reduction to formate by electrocatalyst [Cp*Ir(bpy)Cl]+ (Cp* = pentamethylcyclopentadienyl, bpy = 2,2’‐bipyridine), Fischer esterification of formate to isopropyl formate catalyzed by trifluoromethanesulfonic acid (HOTf), and thermal transfer hydrogenation of isopropyl formate to methanol facilitated by the organometallic catalyst (H‐PNP)Ir(H)3 (H‐PNP = HN(C2H4PiPr2)2). The isopropanol solvent plays several crucial roles: activating formate ion as isopropyl formate, donating hydrogen for the reduction of formate ester to methanol via transfer hydrogenation, and lowering the barrier for transfer hydrogenation through hydrogen bonding interactions. In addition to reporting a method for room‐temperature reduction of challenging ester substrates, this work provides a prototype for pairing electrochemical and thermal organometallic reactions that will guide the design and development of multicatalyst cascades.
doi_str_mv 10.1002/anie.202416061
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3131848412</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3131848412</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1081-e8e9b20cf0fb8a49f5fa095fff4c7508639363942b93f02785c4b3b5eb4d08d73</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhhdRsFavnnP0sm2-tps9SmmtUCloPS-z6aRdyW5qkh568yfoX_SXGKl4GOaBeXhh3iy7ZXTEKOVj6Fscccolm9AJO8sGrOAsF2UpzhNLIfJSFewyuwrhLflK0ckg-3p2rvv--Fxjt0cP8eCRzJ3vICKZhYierD30wSRYHDfebbGH2LqezHpoLAYCCS3q6J3eYddqsOP1DlOAJSu_hd51GMHaVpMpBA0bJMZ58oRxl26WvBz7uMPQBmK868h0xa-zCwM24M3fHmav89l6usiXq4fH6f0y14wqlqPCquFUG2oaBbIyhQFaFcYYqcuCqomoRBrJm0oYytPrWjaiKbCRG6o2pRhmd6fcvXfvBwyx7tqg0Vro0R1CLZhgSirJeFJHJ1V7F4JHU-9924E_1ozWv93Xv93X_92LH8U1ezI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3131848412</pqid></control><display><type>article</type><title>Room‐Temperature Formate Ester Transfer Hydrogenation Enables an Electrochemical/Thermal Organometallic Cascade for Methanol Synthesis from CO2</title><source>Wiley</source><creator>Fernández, Sergio ; Assaf, Eric A. ; Ahmad, Shahbaz ; Travis, Benjamin D. ; Curley, Julia B. ; Hazari, Nilay ; Ertem, Mehmed Z. ; Miller, Alexander James Minden</creator><creatorcontrib>Fernández, Sergio ; Assaf, Eric A. ; Ahmad, Shahbaz ; Travis, Benjamin D. ; Curley, Julia B. ; Hazari, Nilay ; Ertem, Mehmed Z. ; Miller, Alexander James Minden</creatorcontrib><description>The reduction of CO2 to synthetic fuels is a valuable strategy for energy storage. However, the formation of energy‐dense liquid fuels such as methanol remains rare, particularly under low‐temperature and ‐pressure conditions that can be coupled to renewable electricity sources via electrochemistry. Here, a multicatalyst system pairing an electrocatalyst with a thermal organometallic catalyst is introduced, which enables the reduction of CO2 to methanol at ambient temperature and pressure. The cascade methanol synthesis proceeds via CO2 reduction to formate by electrocatalyst [Cp*Ir(bpy)Cl]+ (Cp* = pentamethylcyclopentadienyl, bpy = 2,2’‐bipyridine), Fischer esterification of formate to isopropyl formate catalyzed by trifluoromethanesulfonic acid (HOTf), and thermal transfer hydrogenation of isopropyl formate to methanol facilitated by the organometallic catalyst (H‐PNP)Ir(H)3 (H‐PNP = HN(C2H4PiPr2)2). The isopropanol solvent plays several crucial roles: activating formate ion as isopropyl formate, donating hydrogen for the reduction of formate ester to methanol via transfer hydrogenation, and lowering the barrier for transfer hydrogenation through hydrogen bonding interactions. In addition to reporting a method for room‐temperature reduction of challenging ester substrates, this work provides a prototype for pairing electrochemical and thermal organometallic reactions that will guide the design and development of multicatalyst cascades.</description><identifier>ISSN: 1433-7851</identifier><identifier>ISSN: 1521-3773</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.202416061</identifier><language>eng</language><ispartof>Angewandte Chemie International Edition, 2024-11, p.e202416061</ispartof><rights>2024 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Fernández, Sergio</creatorcontrib><creatorcontrib>Assaf, Eric A.</creatorcontrib><creatorcontrib>Ahmad, Shahbaz</creatorcontrib><creatorcontrib>Travis, Benjamin D.</creatorcontrib><creatorcontrib>Curley, Julia B.</creatorcontrib><creatorcontrib>Hazari, Nilay</creatorcontrib><creatorcontrib>Ertem, Mehmed Z.</creatorcontrib><creatorcontrib>Miller, Alexander James Minden</creatorcontrib><title>Room‐Temperature Formate Ester Transfer Hydrogenation Enables an Electrochemical/Thermal Organometallic Cascade for Methanol Synthesis from CO2</title><title>Angewandte Chemie International Edition</title><description>The reduction of CO2 to synthetic fuels is a valuable strategy for energy storage. However, the formation of energy‐dense liquid fuels such as methanol remains rare, particularly under low‐temperature and ‐pressure conditions that can be coupled to renewable electricity sources via electrochemistry. Here, a multicatalyst system pairing an electrocatalyst with a thermal organometallic catalyst is introduced, which enables the reduction of CO2 to methanol at ambient temperature and pressure. The cascade methanol synthesis proceeds via CO2 reduction to formate by electrocatalyst [Cp*Ir(bpy)Cl]+ (Cp* = pentamethylcyclopentadienyl, bpy = 2,2’‐bipyridine), Fischer esterification of formate to isopropyl formate catalyzed by trifluoromethanesulfonic acid (HOTf), and thermal transfer hydrogenation of isopropyl formate to methanol facilitated by the organometallic catalyst (H‐PNP)Ir(H)3 (H‐PNP = HN(C2H4PiPr2)2). The isopropanol solvent plays several crucial roles: activating formate ion as isopropyl formate, donating hydrogen for the reduction of formate ester to methanol via transfer hydrogenation, and lowering the barrier for transfer hydrogenation through hydrogen bonding interactions. In addition to reporting a method for room‐temperature reduction of challenging ester substrates, this work provides a prototype for pairing electrochemical and thermal organometallic reactions that will guide the design and development of multicatalyst cascades.</description><issn>1433-7851</issn><issn>1521-3773</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LAzEQhhdRsFavnnP0sm2-tps9SmmtUCloPS-z6aRdyW5qkh568yfoX_SXGKl4GOaBeXhh3iy7ZXTEKOVj6Fscccolm9AJO8sGrOAsF2UpzhNLIfJSFewyuwrhLflK0ckg-3p2rvv--Fxjt0cP8eCRzJ3vICKZhYierD30wSRYHDfebbGH2LqezHpoLAYCCS3q6J3eYddqsOP1DlOAJSu_hd51GMHaVpMpBA0bJMZ58oRxl26WvBz7uMPQBmK868h0xa-zCwM24M3fHmav89l6usiXq4fH6f0y14wqlqPCquFUG2oaBbIyhQFaFcYYqcuCqomoRBrJm0oYytPrWjaiKbCRG6o2pRhmd6fcvXfvBwyx7tqg0Vro0R1CLZhgSirJeFJHJ1V7F4JHU-9924E_1ozWv93Xv93X_92LH8U1ezI</recordid><startdate>20241121</startdate><enddate>20241121</enddate><creator>Fernández, Sergio</creator><creator>Assaf, Eric A.</creator><creator>Ahmad, Shahbaz</creator><creator>Travis, Benjamin D.</creator><creator>Curley, Julia B.</creator><creator>Hazari, Nilay</creator><creator>Ertem, Mehmed Z.</creator><creator>Miller, Alexander James Minden</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20241121</creationdate><title>Room‐Temperature Formate Ester Transfer Hydrogenation Enables an Electrochemical/Thermal Organometallic Cascade for Methanol Synthesis from CO2</title><author>Fernández, Sergio ; Assaf, Eric A. ; Ahmad, Shahbaz ; Travis, Benjamin D. ; Curley, Julia B. ; Hazari, Nilay ; Ertem, Mehmed Z. ; Miller, Alexander James Minden</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1081-e8e9b20cf0fb8a49f5fa095fff4c7508639363942b93f02785c4b3b5eb4d08d73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fernández, Sergio</creatorcontrib><creatorcontrib>Assaf, Eric A.</creatorcontrib><creatorcontrib>Ahmad, Shahbaz</creatorcontrib><creatorcontrib>Travis, Benjamin D.</creatorcontrib><creatorcontrib>Curley, Julia B.</creatorcontrib><creatorcontrib>Hazari, Nilay</creatorcontrib><creatorcontrib>Ertem, Mehmed Z.</creatorcontrib><creatorcontrib>Miller, Alexander James Minden</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fernández, Sergio</au><au>Assaf, Eric A.</au><au>Ahmad, Shahbaz</au><au>Travis, Benjamin D.</au><au>Curley, Julia B.</au><au>Hazari, Nilay</au><au>Ertem, Mehmed Z.</au><au>Miller, Alexander James Minden</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Room‐Temperature Formate Ester Transfer Hydrogenation Enables an Electrochemical/Thermal Organometallic Cascade for Methanol Synthesis from CO2</atitle><jtitle>Angewandte Chemie International Edition</jtitle><date>2024-11-21</date><risdate>2024</risdate><spage>e202416061</spage><pages>e202416061-</pages><issn>1433-7851</issn><issn>1521-3773</issn><eissn>1521-3773</eissn><abstract>The reduction of CO2 to synthetic fuels is a valuable strategy for energy storage. However, the formation of energy‐dense liquid fuels such as methanol remains rare, particularly under low‐temperature and ‐pressure conditions that can be coupled to renewable electricity sources via electrochemistry. Here, a multicatalyst system pairing an electrocatalyst with a thermal organometallic catalyst is introduced, which enables the reduction of CO2 to methanol at ambient temperature and pressure. The cascade methanol synthesis proceeds via CO2 reduction to formate by electrocatalyst [Cp*Ir(bpy)Cl]+ (Cp* = pentamethylcyclopentadienyl, bpy = 2,2’‐bipyridine), Fischer esterification of formate to isopropyl formate catalyzed by trifluoromethanesulfonic acid (HOTf), and thermal transfer hydrogenation of isopropyl formate to methanol facilitated by the organometallic catalyst (H‐PNP)Ir(H)3 (H‐PNP = HN(C2H4PiPr2)2). The isopropanol solvent plays several crucial roles: activating formate ion as isopropyl formate, donating hydrogen for the reduction of formate ester to methanol via transfer hydrogenation, and lowering the barrier for transfer hydrogenation through hydrogen bonding interactions. In addition to reporting a method for room‐temperature reduction of challenging ester substrates, this work provides a prototype for pairing electrochemical and thermal organometallic reactions that will guide the design and development of multicatalyst cascades.</abstract><doi>10.1002/anie.202416061</doi></addata></record>
fulltext fulltext
identifier ISSN: 1433-7851
ispartof Angewandte Chemie International Edition, 2024-11, p.e202416061
issn 1433-7851
1521-3773
1521-3773
language eng
recordid cdi_proquest_miscellaneous_3131848412
source Wiley
title Room‐Temperature Formate Ester Transfer Hydrogenation Enables an Electrochemical/Thermal Organometallic Cascade for Methanol Synthesis from CO2
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T10%3A42%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Room%E2%80%90Temperature%20Formate%20Ester%20Transfer%20Hydrogenation%20Enables%20an%20Electrochemical/Thermal%20Organometallic%20Cascade%20for%20Methanol%20Synthesis%20from%20CO2&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Fern%C3%A1ndez,%20Sergio&rft.date=2024-11-21&rft.spage=e202416061&rft.pages=e202416061-&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.202416061&rft_dat=%3Cproquest_cross%3E3131848412%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1081-e8e9b20cf0fb8a49f5fa095fff4c7508639363942b93f02785c4b3b5eb4d08d73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3131848412&rft_id=info:pmid/&rfr_iscdi=true