Loading…
Room‐Temperature Formate Ester Transfer Hydrogenation Enables an Electrochemical/Thermal Organometallic Cascade for Methanol Synthesis from CO2
The reduction of CO2 to synthetic fuels is a valuable strategy for energy storage. However, the formation of energy‐dense liquid fuels such as methanol remains rare, particularly under low‐temperature and ‐pressure conditions that can be coupled to renewable electricity sources via electrochemistry....
Saved in:
Published in: | Angewandte Chemie International Edition 2024-11, p.e202416061 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | e202416061 |
container_title | Angewandte Chemie International Edition |
container_volume | |
creator | Fernández, Sergio Assaf, Eric A. Ahmad, Shahbaz Travis, Benjamin D. Curley, Julia B. Hazari, Nilay Ertem, Mehmed Z. Miller, Alexander James Minden |
description | The reduction of CO2 to synthetic fuels is a valuable strategy for energy storage. However, the formation of energy‐dense liquid fuels such as methanol remains rare, particularly under low‐temperature and ‐pressure conditions that can be coupled to renewable electricity sources via electrochemistry. Here, a multicatalyst system pairing an electrocatalyst with a thermal organometallic catalyst is introduced, which enables the reduction of CO2 to methanol at ambient temperature and pressure. The cascade methanol synthesis proceeds via CO2 reduction to formate by electrocatalyst [Cp*Ir(bpy)Cl]+ (Cp* = pentamethylcyclopentadienyl, bpy = 2,2’‐bipyridine), Fischer esterification of formate to isopropyl formate catalyzed by trifluoromethanesulfonic acid (HOTf), and thermal transfer hydrogenation of isopropyl formate to methanol facilitated by the organometallic catalyst (H‐PNP)Ir(H)3 (H‐PNP = HN(C2H4PiPr2)2). The isopropanol solvent plays several crucial roles: activating formate ion as isopropyl formate, donating hydrogen for the reduction of formate ester to methanol via transfer hydrogenation, and lowering the barrier for transfer hydrogenation through hydrogen bonding interactions. In addition to reporting a method for room‐temperature reduction of challenging ester substrates, this work provides a prototype for pairing electrochemical and thermal organometallic reactions that will guide the design and development of multicatalyst cascades. |
doi_str_mv | 10.1002/anie.202416061 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3131848412</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3131848412</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1081-e8e9b20cf0fb8a49f5fa095fff4c7508639363942b93f02785c4b3b5eb4d08d73</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhhdRsFavnnP0sm2-tps9SmmtUCloPS-z6aRdyW5qkh568yfoX_SXGKl4GOaBeXhh3iy7ZXTEKOVj6Fscccolm9AJO8sGrOAsF2UpzhNLIfJSFewyuwrhLflK0ckg-3p2rvv--Fxjt0cP8eCRzJ3vICKZhYierD30wSRYHDfebbGH2LqezHpoLAYCCS3q6J3eYddqsOP1DlOAJSu_hd51GMHaVpMpBA0bJMZ58oRxl26WvBz7uMPQBmK868h0xa-zCwM24M3fHmav89l6usiXq4fH6f0y14wqlqPCquFUG2oaBbIyhQFaFcYYqcuCqomoRBrJm0oYytPrWjaiKbCRG6o2pRhmd6fcvXfvBwyx7tqg0Vro0R1CLZhgSirJeFJHJ1V7F4JHU-9924E_1ozWv93Xv93X_92LH8U1ezI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3131848412</pqid></control><display><type>article</type><title>Room‐Temperature Formate Ester Transfer Hydrogenation Enables an Electrochemical/Thermal Organometallic Cascade for Methanol Synthesis from CO2</title><source>Wiley</source><creator>Fernández, Sergio ; Assaf, Eric A. ; Ahmad, Shahbaz ; Travis, Benjamin D. ; Curley, Julia B. ; Hazari, Nilay ; Ertem, Mehmed Z. ; Miller, Alexander James Minden</creator><creatorcontrib>Fernández, Sergio ; Assaf, Eric A. ; Ahmad, Shahbaz ; Travis, Benjamin D. ; Curley, Julia B. ; Hazari, Nilay ; Ertem, Mehmed Z. ; Miller, Alexander James Minden</creatorcontrib><description>The reduction of CO2 to synthetic fuels is a valuable strategy for energy storage. However, the formation of energy‐dense liquid fuels such as methanol remains rare, particularly under low‐temperature and ‐pressure conditions that can be coupled to renewable electricity sources via electrochemistry. Here, a multicatalyst system pairing an electrocatalyst with a thermal organometallic catalyst is introduced, which enables the reduction of CO2 to methanol at ambient temperature and pressure. The cascade methanol synthesis proceeds via CO2 reduction to formate by electrocatalyst [Cp*Ir(bpy)Cl]+ (Cp* = pentamethylcyclopentadienyl, bpy = 2,2’‐bipyridine), Fischer esterification of formate to isopropyl formate catalyzed by trifluoromethanesulfonic acid (HOTf), and thermal transfer hydrogenation of isopropyl formate to methanol facilitated by the organometallic catalyst (H‐PNP)Ir(H)3 (H‐PNP = HN(C2H4PiPr2)2). The isopropanol solvent plays several crucial roles: activating formate ion as isopropyl formate, donating hydrogen for the reduction of formate ester to methanol via transfer hydrogenation, and lowering the barrier for transfer hydrogenation through hydrogen bonding interactions. In addition to reporting a method for room‐temperature reduction of challenging ester substrates, this work provides a prototype for pairing electrochemical and thermal organometallic reactions that will guide the design and development of multicatalyst cascades.</description><identifier>ISSN: 1433-7851</identifier><identifier>ISSN: 1521-3773</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.202416061</identifier><language>eng</language><ispartof>Angewandte Chemie International Edition, 2024-11, p.e202416061</ispartof><rights>2024 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Fernández, Sergio</creatorcontrib><creatorcontrib>Assaf, Eric A.</creatorcontrib><creatorcontrib>Ahmad, Shahbaz</creatorcontrib><creatorcontrib>Travis, Benjamin D.</creatorcontrib><creatorcontrib>Curley, Julia B.</creatorcontrib><creatorcontrib>Hazari, Nilay</creatorcontrib><creatorcontrib>Ertem, Mehmed Z.</creatorcontrib><creatorcontrib>Miller, Alexander James Minden</creatorcontrib><title>Room‐Temperature Formate Ester Transfer Hydrogenation Enables an Electrochemical/Thermal Organometallic Cascade for Methanol Synthesis from CO2</title><title>Angewandte Chemie International Edition</title><description>The reduction of CO2 to synthetic fuels is a valuable strategy for energy storage. However, the formation of energy‐dense liquid fuels such as methanol remains rare, particularly under low‐temperature and ‐pressure conditions that can be coupled to renewable electricity sources via electrochemistry. Here, a multicatalyst system pairing an electrocatalyst with a thermal organometallic catalyst is introduced, which enables the reduction of CO2 to methanol at ambient temperature and pressure. The cascade methanol synthesis proceeds via CO2 reduction to formate by electrocatalyst [Cp*Ir(bpy)Cl]+ (Cp* = pentamethylcyclopentadienyl, bpy = 2,2’‐bipyridine), Fischer esterification of formate to isopropyl formate catalyzed by trifluoromethanesulfonic acid (HOTf), and thermal transfer hydrogenation of isopropyl formate to methanol facilitated by the organometallic catalyst (H‐PNP)Ir(H)3 (H‐PNP = HN(C2H4PiPr2)2). The isopropanol solvent plays several crucial roles: activating formate ion as isopropyl formate, donating hydrogen for the reduction of formate ester to methanol via transfer hydrogenation, and lowering the barrier for transfer hydrogenation through hydrogen bonding interactions. In addition to reporting a method for room‐temperature reduction of challenging ester substrates, this work provides a prototype for pairing electrochemical and thermal organometallic reactions that will guide the design and development of multicatalyst cascades.</description><issn>1433-7851</issn><issn>1521-3773</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LAzEQhhdRsFavnnP0sm2-tps9SmmtUCloPS-z6aRdyW5qkh568yfoX_SXGKl4GOaBeXhh3iy7ZXTEKOVj6Fscccolm9AJO8sGrOAsF2UpzhNLIfJSFewyuwrhLflK0ckg-3p2rvv--Fxjt0cP8eCRzJ3vICKZhYierD30wSRYHDfebbGH2LqezHpoLAYCCS3q6J3eYddqsOP1DlOAJSu_hd51GMHaVpMpBA0bJMZ58oRxl26WvBz7uMPQBmK868h0xa-zCwM24M3fHmav89l6usiXq4fH6f0y14wqlqPCquFUG2oaBbIyhQFaFcYYqcuCqomoRBrJm0oYytPrWjaiKbCRG6o2pRhmd6fcvXfvBwyx7tqg0Vro0R1CLZhgSirJeFJHJ1V7F4JHU-9924E_1ozWv93Xv93X_92LH8U1ezI</recordid><startdate>20241121</startdate><enddate>20241121</enddate><creator>Fernández, Sergio</creator><creator>Assaf, Eric A.</creator><creator>Ahmad, Shahbaz</creator><creator>Travis, Benjamin D.</creator><creator>Curley, Julia B.</creator><creator>Hazari, Nilay</creator><creator>Ertem, Mehmed Z.</creator><creator>Miller, Alexander James Minden</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20241121</creationdate><title>Room‐Temperature Formate Ester Transfer Hydrogenation Enables an Electrochemical/Thermal Organometallic Cascade for Methanol Synthesis from CO2</title><author>Fernández, Sergio ; Assaf, Eric A. ; Ahmad, Shahbaz ; Travis, Benjamin D. ; Curley, Julia B. ; Hazari, Nilay ; Ertem, Mehmed Z. ; Miller, Alexander James Minden</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1081-e8e9b20cf0fb8a49f5fa095fff4c7508639363942b93f02785c4b3b5eb4d08d73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fernández, Sergio</creatorcontrib><creatorcontrib>Assaf, Eric A.</creatorcontrib><creatorcontrib>Ahmad, Shahbaz</creatorcontrib><creatorcontrib>Travis, Benjamin D.</creatorcontrib><creatorcontrib>Curley, Julia B.</creatorcontrib><creatorcontrib>Hazari, Nilay</creatorcontrib><creatorcontrib>Ertem, Mehmed Z.</creatorcontrib><creatorcontrib>Miller, Alexander James Minden</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fernández, Sergio</au><au>Assaf, Eric A.</au><au>Ahmad, Shahbaz</au><au>Travis, Benjamin D.</au><au>Curley, Julia B.</au><au>Hazari, Nilay</au><au>Ertem, Mehmed Z.</au><au>Miller, Alexander James Minden</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Room‐Temperature Formate Ester Transfer Hydrogenation Enables an Electrochemical/Thermal Organometallic Cascade for Methanol Synthesis from CO2</atitle><jtitle>Angewandte Chemie International Edition</jtitle><date>2024-11-21</date><risdate>2024</risdate><spage>e202416061</spage><pages>e202416061-</pages><issn>1433-7851</issn><issn>1521-3773</issn><eissn>1521-3773</eissn><abstract>The reduction of CO2 to synthetic fuels is a valuable strategy for energy storage. However, the formation of energy‐dense liquid fuels such as methanol remains rare, particularly under low‐temperature and ‐pressure conditions that can be coupled to renewable electricity sources via electrochemistry. Here, a multicatalyst system pairing an electrocatalyst with a thermal organometallic catalyst is introduced, which enables the reduction of CO2 to methanol at ambient temperature and pressure. The cascade methanol synthesis proceeds via CO2 reduction to formate by electrocatalyst [Cp*Ir(bpy)Cl]+ (Cp* = pentamethylcyclopentadienyl, bpy = 2,2’‐bipyridine), Fischer esterification of formate to isopropyl formate catalyzed by trifluoromethanesulfonic acid (HOTf), and thermal transfer hydrogenation of isopropyl formate to methanol facilitated by the organometallic catalyst (H‐PNP)Ir(H)3 (H‐PNP = HN(C2H4PiPr2)2). The isopropanol solvent plays several crucial roles: activating formate ion as isopropyl formate, donating hydrogen for the reduction of formate ester to methanol via transfer hydrogenation, and lowering the barrier for transfer hydrogenation through hydrogen bonding interactions. In addition to reporting a method for room‐temperature reduction of challenging ester substrates, this work provides a prototype for pairing electrochemical and thermal organometallic reactions that will guide the design and development of multicatalyst cascades.</abstract><doi>10.1002/anie.202416061</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1433-7851 |
ispartof | Angewandte Chemie International Edition, 2024-11, p.e202416061 |
issn | 1433-7851 1521-3773 1521-3773 |
language | eng |
recordid | cdi_proquest_miscellaneous_3131848412 |
source | Wiley |
title | Room‐Temperature Formate Ester Transfer Hydrogenation Enables an Electrochemical/Thermal Organometallic Cascade for Methanol Synthesis from CO2 |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T10%3A42%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Room%E2%80%90Temperature%20Formate%20Ester%20Transfer%20Hydrogenation%20Enables%20an%20Electrochemical/Thermal%20Organometallic%20Cascade%20for%20Methanol%20Synthesis%20from%20CO2&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Fern%C3%A1ndez,%20Sergio&rft.date=2024-11-21&rft.spage=e202416061&rft.pages=e202416061-&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.202416061&rft_dat=%3Cproquest_cross%3E3131848412%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1081-e8e9b20cf0fb8a49f5fa095fff4c7508639363942b93f02785c4b3b5eb4d08d73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3131848412&rft_id=info:pmid/&rfr_iscdi=true |