Loading…
Evidence for interaction of 5,10-methylenetetrahydrofolate reductase (MTHFR) with methylenetetrahydrofolate dehydrogenase (MTHFD1) and general control nonderepressible 1 (GCN1)
5,10-Methylenetetrahydrofolate reductase (MTHFR) is a folate cycle enzyme required for the intracellular synthesis of methionine. MTHFR was previously shown to be partially phosphorylated at 16 residues, which was abrogated by conversion of threonine 34 to alanine (T34A) or truncation of the first 3...
Saved in:
Published in: | Biochimie 2024-11 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | 5,10-Methylenetetrahydrofolate reductase (MTHFR) is a folate cycle enzyme required for the intracellular synthesis of methionine. MTHFR was previously shown to be partially phosphorylated at 16 residues, which was abrogated by conversion of threonine 34 to alanine (T34A) or truncation of the first 37 amino acids (i.e. expression of amino acids 38–656), and promoted by methionine supplementation. Here, we over-expressed wild-type MTHFR (MTFHRWT), as well as the variants MTHFRT34A and MTHFR38-656 in 293T cells to provide further insights into these mechanisms. We demonstrate that following incubation in high methionine conditions (100–1000 μM) MTHFRWT is almost completely phosphorylated, but in methionine restricted conditions (0–10 μM) phosphorylation is reduced, while MTHFRT34A always remains unphosphorylated. Following affinity purification coupled mass spectrometry of an empty vector, MTHFRWT, MTHFRT34A and MTHFR38-656 in three separate experiments, we identified 134 proteins consistently pulled-down by all three MTHFR protein variants, of which 5 were indicated to be likely true interactors (SAINT prediction threshold of 0.95 and 2 fold-change). Amongst these were the folate cycle enzyme methylenetetrahydrofolate dehydrogenase (MTHFD1) and the amino acid starvation sensor general control nonderepressible 1 (GCN1). Immunoprecipitation-immunoblotting of MTHFRWT replicated interaction with both proteins. An AlphaFold 3 generated model of the MTHFR-MTHFD1 interaction places the MTHFD1 dehydrogenase/cyclohydrolase domain in direct contact with the MTHFR catalytic domain, suggesting their interaction may facilitate direct delivery of methylenetetrahydrofolate. Overall, we confirm methionine availability increases MTHFR phosphorylation, and identified potential interaction of MTHFR with MTHFD1 and GCN1.
•Methionine supplementation facilitates MTHFR phosphorylation.•We identified MTHFR to potentially interact with GCN1 and MTHDF1.•AlphaFold 3 modeling of MTHFR-MTHFD1 visualizes their possible interaction. |
---|---|
ISSN: | 0300-9084 1638-6183 1638-6183 |
DOI: | 10.1016/j.biochi.2024.11.010 |