Loading…

Design terahertz polarizers and vector polarized vortex terahertz wave generators based on the effective dielectric constant of metal gratings

Polarization and phase devices for terahertz waves have important applications in terahertz detection, imaging, communication, etc. Spatially variable metal gratings can be used for broad-spectrum, miniaturized, and low-cost terahertz polarization and phase modulation devices. Based on the effective...

Full description

Saved in:
Bibliographic Details
Published in:Optics express 2024-09, Vol.32 (19), p.33357
Main Authors: Cai, Mengqiang, Wu, Zhixu, Yan, Weichao, Lei, Jiangtao, Xia, Yong, Tang, Rongxin
Format: Article
Language:English
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Polarization and phase devices for terahertz waves have important applications in terahertz detection, imaging, communication, etc. Spatially variable metal gratings can be used for broad-spectrum, miniaturized, and low-cost terahertz polarization and phase modulation devices. Based on the effective dielectric constant and the theory of light propagation in multilayer media, we obtain the relationship between the transmittance and extinction ratio and the parameters such as the duty cycle of the metal grating, the frequency of the incident terahertz wave, the angle of incidence, the thickness of the metal grating, the refractive index of the substrate, and the thickness of the substrate. We propose a method of designing a spatially variable metal grating located on a transparent substrate. The designed spatially variable metal grating is also used to modulate the terahertz spatial polarization and phase to generate terahertz optical fields whose polarization and phase change simultaneously in space, such as azimuthally vector vortex terahertz optical fields, radially vector vortex terahertz optical fields, and so on. This will have important applications in terahertz time-domain spectroscopic detection, terahertz time-domain spectroscopic imaging, terahertz time-domain near-field microscopic imaging, terahertz communication, and so on.
ISSN:1094-4087
1094-4087
DOI:10.1364/OE.530489