Loading…

Towards a CMOS compatible refractive index sensor: cointegration of TiN nanohole arrays and Ge photodetectors in a 200 mm wafer silicon technology

In this work, we present the monolithic integration of a TiN nanohole array and a Ge photodetector towards a CMOS compatible fabrication of a refractive index sensor in a 200 mm wafer silicon technology. We developed a technology process that enables fabrication with high yields of around 90%. Ge ph...

Full description

Saved in:
Bibliographic Details
Published in:Optics express 2024-08, Vol.32 (17), p.29099
Main Authors: Mai, Christian, Peczek, Anna, Kroh, Aleksandra, Jose, Josmy, Reiter, Sebastian, Wenger, Christian, Fischer, Inga Anita
Format: Article
Language:English
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this work, we present the monolithic integration of a TiN nanohole array and a Ge photodetector towards a CMOS compatible fabrication of a refractive index sensor in a 200 mm wafer silicon technology. We developed a technology process that enables fabrication with high yields of around 90%. Ge photodetectors with a Ge layer thickness of 450 nm and an area of 1600 µm (40 µm x 40 µm) show dark current densities of around 129 mA/cm and responsivities of 0.114 A/W measured by top illumination (TE polarization; λ = 1310 nm; angle of incidence = 14 °) at a reverse bias of 1 V. Nanohole arrays were structured in a 150 nm thick TiN layer. They were integrated into the back end of line and placed spatially close to the Ge photodetectors. After the metallization, passivation, and pad opening, the nanohole arrays were released with the help of an amorphous silicon stop layer. A significant impact of the TiN nanohole arrays on the optical behavior of the photodetector could be proven on the wafer level. Photocurrent measurements by top illumination confirm a strong dependence of optical properties on the polarization of the incident light and the nanohole array design. We demonstrate very stable photocurrents on the wafer level with a standard deviation of σ 
ISSN:1094-4087
1094-4087
DOI:10.1364/OE.530081