Loading…
Inexpensive carbon based co‐catalyst modified Zr‐MOF towards photocatalytic H2O2 and H2 production
Photocatalytic hydrogen peroxide and hydrogen production are the utmost encouraging ways to overcome the imminent energy catastrophe. For accomplishing these goals the photocatalysts needs to be stable, trap photons and superior exciton separation, yet these properties are scanty for Zr‐MOFs. Hence,...
Saved in:
Published in: | Chemistry, an Asian journal an Asian journal, 2024-11, p.e202401115 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Photocatalytic hydrogen peroxide and hydrogen production are the utmost encouraging ways to overcome the imminent energy catastrophe. For accomplishing these goals the photocatalysts needs to be stable, trap photons and superior exciton separation, yet these properties are scanty for Zr‐MOFs. Hence, UiO‐66‐NH2 is armed with Carbon nanoparticles that were incorporated through facile solvothermal procedure are employed towards photocatalytic H2 and H2O2 production. Composite UC‐2 exhibits an H2O2 generation rate of 33.2 μmol h−1 in an O2 saturated conditions with isopropyl alcohol and water underneath visible light irradiation. This H2O2 generation rate was nearly three folds higher than the pristine UiO‐66‐NH2 MOF. Moreover, the produced materials were subjected to a photocatalytic H2 evolution research, and similar results were obtained, indicating that UC‐2 has the maximum H2 evolution capacity at 298.1 μmol h−1. The UC‐2 composite exhibits improved photocatalytic activity, which was ascribed to the composites capacity to suppress exciton re‐combination, enhanced photon capture and to facilitate quicker charge transfer. Typically, the light trapping tendency, remarkable electron transfer capacity and electron capture capacity of the carbon NPs based co‐catalyst aids to improve the overall photo‐reaction performance thereby producing superior photocatalytic H2O2 and H2 as a sustainable energy alternative. |
---|---|
ISSN: | 1861-4728 1861-471X 1861-471X |
DOI: | 10.1002/asia.202401115 |