Loading…
Loss of PII-dependent control of arginine biosynthesis in Dunaliella salina
In cyanobacteria and most Archaeplastida, Arg regulates its formation via allosteric inhibition of the controlling enzyme, N-acetyl-L-glutamate kinase (NAGK) that requires PII protein to properly sense the feedback inhibitor. Although PII expression has been shown to be reduced in Dunaliella salina...
Saved in:
Published in: | Plant science (Limerick) 2025-02, Vol.351, p.112327, Article 112327 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In cyanobacteria and most Archaeplastida, Arg regulates its formation via allosteric inhibition of the controlling enzyme, N-acetyl-L-glutamate kinase (NAGK) that requires PII protein to properly sense the feedback inhibitor. Although PII expression has been shown to be reduced in Dunaliella salina compared to other green algae, the potential impact of this protein on DsNAGK activity remains unclear. We here performed coupled enzyme assay and surface plasmon resonance analysis and show that DsNAGK is activated by NAG and inhibited by Arg but is not controlled by DsPII. Moreover, DsPII has likely lost its function as an effective glutamine sensor. Replacement of the C-terminus from DsPII with the C-terminus from Chlamydomonas PII restored sensitivity to glutamine in a recombinant DsPII protein, demonstrating the importance of C-terminal residues close to the Q-loop for PII functions. The findings are discussed in the context of the relationship between NAGK control and the acquisition of salinity tolerance during evolution.
[Display omitted]
•N-acetyl-L-glutamate kinase of Dunaliella salina is not controlled by its DsPII.•Dunaliella PII has lost its function as an effective glutamine sensor.•The C-terminus from Chlamydomonas PII restores glutamine sensing in DsPII. |
---|---|
ISSN: | 0168-9452 1873-2259 1873-2259 |
DOI: | 10.1016/j.plantsci.2024.112327 |