Loading…

Signaling Regulation of FAM134-Dependent ER-Phagy in Cells

The endoplasmic reticulum (ER) is a pivotal organelle responsible for protein and lipid synthesis, calcium homeostasis, and protein quality control within eukaryotic cells. To maintain cellular health, damaged or excess portions of the ER must be selectively degraded via a process known as selective...

Full description

Saved in:
Bibliographic Details
Published in:Journal of cellular physiology 2025-01, Vol.240 (1), p.e31492
Main Authors: Palma, Alessandro, Reggio, Alessio
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The endoplasmic reticulum (ER) is a pivotal organelle responsible for protein and lipid synthesis, calcium homeostasis, and protein quality control within eukaryotic cells. To maintain cellular health, damaged or excess portions of the ER must be selectively degraded via a process known as selective autophagy, or ER-phagy. This specificity is driven by a network of protein receptors and regulatory mechanisms. In this review, we explore the molecular mechanisms governing ER-phagy, with a focus on the FAM134 family of ER-resident ER-phagy receptors. We discuss the molecular pathways and Posttranslational modifications that regulate receptor activation and clustering, and how these modifications fine-tune ER-phagy in response to stress. This review provides a concise understanding of how ER-phagy contributes to cellular homeostasis and highlights the need for further studies in models where ER stress and autophagy are dysregulated.
ISSN:0021-9541
1097-4652
1097-4652
DOI:10.1002/jcp.31492