Loading…

Prostate Cancer Classification and Interpretation With Multiparametric Magnetic Resonance Imaging and Gleason Grade Score Using DarkNet53 Model

ABSTRACT Background Prostate Cancer (PCa) increases the mortality rate of males worldwide and is caused by genetics, lifestyle, and age reasons. The existing automated PCa classification systems face difficulties with overfitting issues, and non‐generalizability, leading to poor classification perfo...

Full description

Saved in:
Bibliographic Details
Published in:The Prostate 2025-02, Vol.85 (3), p.294-307
Main Authors: Gladis Pushparathi, Vasantha Pragasam, Justin Xavier, Dhas, Chitra, Pandian, Kannan, Gopalraj
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c2467-bfe814287731b079223faad0707111cec7ac6c4aee279c90b07ed56a10e8e5073
container_end_page 307
container_issue 3
container_start_page 294
container_title The Prostate
container_volume 85
creator Gladis Pushparathi, Vasantha Pragasam
Justin Xavier, Dhas
Chitra, Pandian
Kannan, Gopalraj
description ABSTRACT Background Prostate Cancer (PCa) increases the mortality rate of males worldwide and is caused by genetics, lifestyle, and age reasons. The existing automated PCa classification systems face difficulties with overfitting issues, and non‐generalizability, leading to poor classification performance. Objective On this account, this study proposes an automated classification of PCa from MRI images using a hybrid weighted mean of vectors‐optimized DarkNet53 classifier model. Methodology The proposed method suggests nonlocal mean filtering for noise reduction, N4ITK bias field correction to enhance image quality, and active contour‐based segmentation for accurately identifying the disease region. The feature extraction utilizes the gray level run length matrix and shape features for effective feature extraction. A weighted mean of vectors optimization is used to optimize the feature selection process by hybridizing it with the DarkNet53 model for classification. Finally, the interpretation of achieving the classification has been demonstrated using the explainable AI Grad‐CAM model. Results After comparing the proposed work with various state‐of‐the‐art algorithms, the proposed model achieves 99.31% accuracy, 98.24% sensitivity, and 98.46% specificity, respectively, highlighting the model's accomplishment using the DarkNet53 classifier.
doi_str_mv 10.1002/pros.24827
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3132612464</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3153491687</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2467-bfe814287731b079223faad0707111cec7ac6c4aee279c90b07ed56a10e8e5073</originalsourceid><addsrcrecordid>eNp9kc9u1DAQhy0EotvChQdAlrigSin-lzg5oqVdVurSqqXiGM06k8Ulcba2o6pP0VfGaQoHDpw8mvn82ZofIe84O-GMiU97P4QToUqhX5AFZ5XOGFP5S7JgQrNMcakPyGEIt4wlnInX5EBWeakKXi7I42W6HCEiXYIz6OmygxBsaw1EOzgKrqFrF9HvPca59cPGn3QzdtHuwUOP0VtDN7BzGFNxhWFwk4que9hZt3tSrDqE1KcrDw3SazN4pDdhmn4B_-sbxlzSzdBg94a8aqEL-Pb5PCI3Z6ffl1-z84vVevn5PDNCFTrbtlhyJUqtJd8yXQkhW4CGaaY55waNBlMYBYhCV6ZiicEmL4AzLDFnWh6Rj7M3Le9uxBDr3gaDXQcOhzHUkktR8PSWSuiHf9DbYfQu_S5RuVQVL8pJeDxTJi00eGzrvbc9-Ieas3qKqZ5iqp9iSvD7Z-W47bH5i_7JJQF8Bu5thw__UdWXVxfXs_Q3r2SeRw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3153491687</pqid></control><display><type>article</type><title>Prostate Cancer Classification and Interpretation With Multiparametric Magnetic Resonance Imaging and Gleason Grade Score Using DarkNet53 Model</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Gladis Pushparathi, Vasantha Pragasam ; Justin Xavier, Dhas ; Chitra, Pandian ; Kannan, Gopalraj</creator><creatorcontrib>Gladis Pushparathi, Vasantha Pragasam ; Justin Xavier, Dhas ; Chitra, Pandian ; Kannan, Gopalraj</creatorcontrib><description>ABSTRACT Background Prostate Cancer (PCa) increases the mortality rate of males worldwide and is caused by genetics, lifestyle, and age reasons. The existing automated PCa classification systems face difficulties with overfitting issues, and non‐generalizability, leading to poor classification performance. Objective On this account, this study proposes an automated classification of PCa from MRI images using a hybrid weighted mean of vectors‐optimized DarkNet53 classifier model. Methodology The proposed method suggests nonlocal mean filtering for noise reduction, N4ITK bias field correction to enhance image quality, and active contour‐based segmentation for accurately identifying the disease region. The feature extraction utilizes the gray level run length matrix and shape features for effective feature extraction. A weighted mean of vectors optimization is used to optimize the feature selection process by hybridizing it with the DarkNet53 model for classification. Finally, the interpretation of achieving the classification has been demonstrated using the explainable AI Grad‐CAM model. Results After comparing the proposed work with various state‐of‐the‐art algorithms, the proposed model achieves 99.31% accuracy, 98.24% sensitivity, and 98.46% specificity, respectively, highlighting the model's accomplishment using the DarkNet53 classifier.</description><identifier>ISSN: 0270-4137</identifier><identifier>ISSN: 1097-0045</identifier><identifier>EISSN: 1097-0045</identifier><identifier>DOI: 10.1002/pros.24827</identifier><identifier>PMID: 39584618</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Algorithms ; Automation ; Classification ; Classification systems ; DarkNet53 model ; Grad‐CAM ; Humans ; Image Interpretation, Computer-Assisted - methods ; Image processing ; Magnetic resonance imaging ; Male ; Multiparametric Magnetic Resonance Imaging - methods ; Neoplasm Grading - methods ; Noise reduction ; Prostate cancer ; Prostatic Neoplasms - classification ; Prostatic Neoplasms - diagnostic imaging ; Prostatic Neoplasms - pathology ; weighted mean of vectors optimization</subject><ispartof>The Prostate, 2025-02, Vol.85 (3), p.294-307</ispartof><rights>2024 Wiley Periodicals LLC.</rights><rights>2025 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2467-bfe814287731b079223faad0707111cec7ac6c4aee279c90b07ed56a10e8e5073</cites><orcidid>0009-0008-7227-3530</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39584618$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gladis Pushparathi, Vasantha Pragasam</creatorcontrib><creatorcontrib>Justin Xavier, Dhas</creatorcontrib><creatorcontrib>Chitra, Pandian</creatorcontrib><creatorcontrib>Kannan, Gopalraj</creatorcontrib><title>Prostate Cancer Classification and Interpretation With Multiparametric Magnetic Resonance Imaging and Gleason Grade Score Using DarkNet53 Model</title><title>The Prostate</title><addtitle>Prostate</addtitle><description>ABSTRACT Background Prostate Cancer (PCa) increases the mortality rate of males worldwide and is caused by genetics, lifestyle, and age reasons. The existing automated PCa classification systems face difficulties with overfitting issues, and non‐generalizability, leading to poor classification performance. Objective On this account, this study proposes an automated classification of PCa from MRI images using a hybrid weighted mean of vectors‐optimized DarkNet53 classifier model. Methodology The proposed method suggests nonlocal mean filtering for noise reduction, N4ITK bias field correction to enhance image quality, and active contour‐based segmentation for accurately identifying the disease region. The feature extraction utilizes the gray level run length matrix and shape features for effective feature extraction. A weighted mean of vectors optimization is used to optimize the feature selection process by hybridizing it with the DarkNet53 model for classification. Finally, the interpretation of achieving the classification has been demonstrated using the explainable AI Grad‐CAM model. Results After comparing the proposed work with various state‐of‐the‐art algorithms, the proposed model achieves 99.31% accuracy, 98.24% sensitivity, and 98.46% specificity, respectively, highlighting the model's accomplishment using the DarkNet53 classifier.</description><subject>Algorithms</subject><subject>Automation</subject><subject>Classification</subject><subject>Classification systems</subject><subject>DarkNet53 model</subject><subject>Grad‐CAM</subject><subject>Humans</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Image processing</subject><subject>Magnetic resonance imaging</subject><subject>Male</subject><subject>Multiparametric Magnetic Resonance Imaging - methods</subject><subject>Neoplasm Grading - methods</subject><subject>Noise reduction</subject><subject>Prostate cancer</subject><subject>Prostatic Neoplasms - classification</subject><subject>Prostatic Neoplasms - diagnostic imaging</subject><subject>Prostatic Neoplasms - pathology</subject><subject>weighted mean of vectors optimization</subject><issn>0270-4137</issn><issn>1097-0045</issn><issn>1097-0045</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNp9kc9u1DAQhy0EotvChQdAlrigSin-lzg5oqVdVurSqqXiGM06k8Ulcba2o6pP0VfGaQoHDpw8mvn82ZofIe84O-GMiU97P4QToUqhX5AFZ5XOGFP5S7JgQrNMcakPyGEIt4wlnInX5EBWeakKXi7I42W6HCEiXYIz6OmygxBsaw1EOzgKrqFrF9HvPca59cPGn3QzdtHuwUOP0VtDN7BzGFNxhWFwk4que9hZt3tSrDqE1KcrDw3SazN4pDdhmn4B_-sbxlzSzdBg94a8aqEL-Pb5PCI3Z6ffl1-z84vVevn5PDNCFTrbtlhyJUqtJd8yXQkhW4CGaaY55waNBlMYBYhCV6ZiicEmL4AzLDFnWh6Rj7M3Le9uxBDr3gaDXQcOhzHUkktR8PSWSuiHf9DbYfQu_S5RuVQVL8pJeDxTJi00eGzrvbc9-Ieas3qKqZ5iqp9iSvD7Z-W47bH5i_7JJQF8Bu5thw__UdWXVxfXs_Q3r2SeRw</recordid><startdate>202502</startdate><enddate>202502</enddate><creator>Gladis Pushparathi, Vasantha Pragasam</creator><creator>Justin Xavier, Dhas</creator><creator>Chitra, Pandian</creator><creator>Kannan, Gopalraj</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7T5</scope><scope>7TO</scope><scope>8FD</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0009-0008-7227-3530</orcidid></search><sort><creationdate>202502</creationdate><title>Prostate Cancer Classification and Interpretation With Multiparametric Magnetic Resonance Imaging and Gleason Grade Score Using DarkNet53 Model</title><author>Gladis Pushparathi, Vasantha Pragasam ; Justin Xavier, Dhas ; Chitra, Pandian ; Kannan, Gopalraj</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2467-bfe814287731b079223faad0707111cec7ac6c4aee279c90b07ed56a10e8e5073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Algorithms</topic><topic>Automation</topic><topic>Classification</topic><topic>Classification systems</topic><topic>DarkNet53 model</topic><topic>Grad‐CAM</topic><topic>Humans</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Image processing</topic><topic>Magnetic resonance imaging</topic><topic>Male</topic><topic>Multiparametric Magnetic Resonance Imaging - methods</topic><topic>Neoplasm Grading - methods</topic><topic>Noise reduction</topic><topic>Prostate cancer</topic><topic>Prostatic Neoplasms - classification</topic><topic>Prostatic Neoplasms - diagnostic imaging</topic><topic>Prostatic Neoplasms - pathology</topic><topic>weighted mean of vectors optimization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gladis Pushparathi, Vasantha Pragasam</creatorcontrib><creatorcontrib>Justin Xavier, Dhas</creatorcontrib><creatorcontrib>Chitra, Pandian</creatorcontrib><creatorcontrib>Kannan, Gopalraj</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Immunology Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>The Prostate</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gladis Pushparathi, Vasantha Pragasam</au><au>Justin Xavier, Dhas</au><au>Chitra, Pandian</au><au>Kannan, Gopalraj</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prostate Cancer Classification and Interpretation With Multiparametric Magnetic Resonance Imaging and Gleason Grade Score Using DarkNet53 Model</atitle><jtitle>The Prostate</jtitle><addtitle>Prostate</addtitle><date>2025-02</date><risdate>2025</risdate><volume>85</volume><issue>3</issue><spage>294</spage><epage>307</epage><pages>294-307</pages><issn>0270-4137</issn><issn>1097-0045</issn><eissn>1097-0045</eissn><abstract>ABSTRACT Background Prostate Cancer (PCa) increases the mortality rate of males worldwide and is caused by genetics, lifestyle, and age reasons. The existing automated PCa classification systems face difficulties with overfitting issues, and non‐generalizability, leading to poor classification performance. Objective On this account, this study proposes an automated classification of PCa from MRI images using a hybrid weighted mean of vectors‐optimized DarkNet53 classifier model. Methodology The proposed method suggests nonlocal mean filtering for noise reduction, N4ITK bias field correction to enhance image quality, and active contour‐based segmentation for accurately identifying the disease region. The feature extraction utilizes the gray level run length matrix and shape features for effective feature extraction. A weighted mean of vectors optimization is used to optimize the feature selection process by hybridizing it with the DarkNet53 model for classification. Finally, the interpretation of achieving the classification has been demonstrated using the explainable AI Grad‐CAM model. Results After comparing the proposed work with various state‐of‐the‐art algorithms, the proposed model achieves 99.31% accuracy, 98.24% sensitivity, and 98.46% specificity, respectively, highlighting the model's accomplishment using the DarkNet53 classifier.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>39584618</pmid><doi>10.1002/pros.24827</doi><tpages>14</tpages><orcidid>https://orcid.org/0009-0008-7227-3530</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0270-4137
ispartof The Prostate, 2025-02, Vol.85 (3), p.294-307
issn 0270-4137
1097-0045
1097-0045
language eng
recordid cdi_proquest_miscellaneous_3132612464
source Wiley-Blackwell Read & Publish Collection
subjects Algorithms
Automation
Classification
Classification systems
DarkNet53 model
Grad‐CAM
Humans
Image Interpretation, Computer-Assisted - methods
Image processing
Magnetic resonance imaging
Male
Multiparametric Magnetic Resonance Imaging - methods
Neoplasm Grading - methods
Noise reduction
Prostate cancer
Prostatic Neoplasms - classification
Prostatic Neoplasms - diagnostic imaging
Prostatic Neoplasms - pathology
weighted mean of vectors optimization
title Prostate Cancer Classification and Interpretation With Multiparametric Magnetic Resonance Imaging and Gleason Grade Score Using DarkNet53 Model
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T22%3A06%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prostate%20Cancer%20Classification%20and%20Interpretation%20With%20Multiparametric%20Magnetic%20Resonance%20Imaging%20and%20Gleason%20Grade%20Score%20Using%20DarkNet53%20Model&rft.jtitle=The%20Prostate&rft.au=Gladis%20Pushparathi,%20Vasantha%20Pragasam&rft.date=2025-02&rft.volume=85&rft.issue=3&rft.spage=294&rft.epage=307&rft.pages=294-307&rft.issn=0270-4137&rft.eissn=1097-0045&rft_id=info:doi/10.1002/pros.24827&rft_dat=%3Cproquest_cross%3E3153491687%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2467-bfe814287731b079223faad0707111cec7ac6c4aee279c90b07ed56a10e8e5073%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3153491687&rft_id=info:pmid/39584618&rfr_iscdi=true