Loading…
Prostate Cancer Classification and Interpretation With Multiparametric Magnetic Resonance Imaging and Gleason Grade Score Using DarkNet53 Model
ABSTRACT Background Prostate Cancer (PCa) increases the mortality rate of males worldwide and is caused by genetics, lifestyle, and age reasons. The existing automated PCa classification systems face difficulties with overfitting issues, and non‐generalizability, leading to poor classification perfo...
Saved in:
Published in: | The Prostate 2025-02, Vol.85 (3), p.294-307 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c2467-bfe814287731b079223faad0707111cec7ac6c4aee279c90b07ed56a10e8e5073 |
container_end_page | 307 |
container_issue | 3 |
container_start_page | 294 |
container_title | The Prostate |
container_volume | 85 |
creator | Gladis Pushparathi, Vasantha Pragasam Justin Xavier, Dhas Chitra, Pandian Kannan, Gopalraj |
description | ABSTRACT
Background
Prostate Cancer (PCa) increases the mortality rate of males worldwide and is caused by genetics, lifestyle, and age reasons. The existing automated PCa classification systems face difficulties with overfitting issues, and non‐generalizability, leading to poor classification performance.
Objective
On this account, this study proposes an automated classification of PCa from MRI images using a hybrid weighted mean of vectors‐optimized DarkNet53 classifier model.
Methodology
The proposed method suggests nonlocal mean filtering for noise reduction, N4ITK bias field correction to enhance image quality, and active contour‐based segmentation for accurately identifying the disease region. The feature extraction utilizes the gray level run length matrix and shape features for effective feature extraction. A weighted mean of vectors optimization is used to optimize the feature selection process by hybridizing it with the DarkNet53 model for classification. Finally, the interpretation of achieving the classification has been demonstrated using the explainable AI Grad‐CAM model.
Results
After comparing the proposed work with various state‐of‐the‐art algorithms, the proposed model achieves 99.31% accuracy, 98.24% sensitivity, and 98.46% specificity, respectively, highlighting the model's accomplishment using the DarkNet53 classifier. |
doi_str_mv | 10.1002/pros.24827 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3132612464</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3153491687</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2467-bfe814287731b079223faad0707111cec7ac6c4aee279c90b07ed56a10e8e5073</originalsourceid><addsrcrecordid>eNp9kc9u1DAQhy0EotvChQdAlrigSin-lzg5oqVdVurSqqXiGM06k8Ulcba2o6pP0VfGaQoHDpw8mvn82ZofIe84O-GMiU97P4QToUqhX5AFZ5XOGFP5S7JgQrNMcakPyGEIt4wlnInX5EBWeakKXi7I42W6HCEiXYIz6OmygxBsaw1EOzgKrqFrF9HvPca59cPGn3QzdtHuwUOP0VtDN7BzGFNxhWFwk4que9hZt3tSrDqE1KcrDw3SazN4pDdhmn4B_-sbxlzSzdBg94a8aqEL-Pb5PCI3Z6ffl1-z84vVevn5PDNCFTrbtlhyJUqtJd8yXQkhW4CGaaY55waNBlMYBYhCV6ZiicEmL4AzLDFnWh6Rj7M3Le9uxBDr3gaDXQcOhzHUkktR8PSWSuiHf9DbYfQu_S5RuVQVL8pJeDxTJi00eGzrvbc9-Ieas3qKqZ5iqp9iSvD7Z-W47bH5i_7JJQF8Bu5thw__UdWXVxfXs_Q3r2SeRw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3153491687</pqid></control><display><type>article</type><title>Prostate Cancer Classification and Interpretation With Multiparametric Magnetic Resonance Imaging and Gleason Grade Score Using DarkNet53 Model</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Gladis Pushparathi, Vasantha Pragasam ; Justin Xavier, Dhas ; Chitra, Pandian ; Kannan, Gopalraj</creator><creatorcontrib>Gladis Pushparathi, Vasantha Pragasam ; Justin Xavier, Dhas ; Chitra, Pandian ; Kannan, Gopalraj</creatorcontrib><description>ABSTRACT
Background
Prostate Cancer (PCa) increases the mortality rate of males worldwide and is caused by genetics, lifestyle, and age reasons. The existing automated PCa classification systems face difficulties with overfitting issues, and non‐generalizability, leading to poor classification performance.
Objective
On this account, this study proposes an automated classification of PCa from MRI images using a hybrid weighted mean of vectors‐optimized DarkNet53 classifier model.
Methodology
The proposed method suggests nonlocal mean filtering for noise reduction, N4ITK bias field correction to enhance image quality, and active contour‐based segmentation for accurately identifying the disease region. The feature extraction utilizes the gray level run length matrix and shape features for effective feature extraction. A weighted mean of vectors optimization is used to optimize the feature selection process by hybridizing it with the DarkNet53 model for classification. Finally, the interpretation of achieving the classification has been demonstrated using the explainable AI Grad‐CAM model.
Results
After comparing the proposed work with various state‐of‐the‐art algorithms, the proposed model achieves 99.31% accuracy, 98.24% sensitivity, and 98.46% specificity, respectively, highlighting the model's accomplishment using the DarkNet53 classifier.</description><identifier>ISSN: 0270-4137</identifier><identifier>ISSN: 1097-0045</identifier><identifier>EISSN: 1097-0045</identifier><identifier>DOI: 10.1002/pros.24827</identifier><identifier>PMID: 39584618</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Algorithms ; Automation ; Classification ; Classification systems ; DarkNet53 model ; Grad‐CAM ; Humans ; Image Interpretation, Computer-Assisted - methods ; Image processing ; Magnetic resonance imaging ; Male ; Multiparametric Magnetic Resonance Imaging - methods ; Neoplasm Grading - methods ; Noise reduction ; Prostate cancer ; Prostatic Neoplasms - classification ; Prostatic Neoplasms - diagnostic imaging ; Prostatic Neoplasms - pathology ; weighted mean of vectors optimization</subject><ispartof>The Prostate, 2025-02, Vol.85 (3), p.294-307</ispartof><rights>2024 Wiley Periodicals LLC.</rights><rights>2025 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2467-bfe814287731b079223faad0707111cec7ac6c4aee279c90b07ed56a10e8e5073</cites><orcidid>0009-0008-7227-3530</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39584618$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gladis Pushparathi, Vasantha Pragasam</creatorcontrib><creatorcontrib>Justin Xavier, Dhas</creatorcontrib><creatorcontrib>Chitra, Pandian</creatorcontrib><creatorcontrib>Kannan, Gopalraj</creatorcontrib><title>Prostate Cancer Classification and Interpretation With Multiparametric Magnetic Resonance Imaging and Gleason Grade Score Using DarkNet53 Model</title><title>The Prostate</title><addtitle>Prostate</addtitle><description>ABSTRACT
Background
Prostate Cancer (PCa) increases the mortality rate of males worldwide and is caused by genetics, lifestyle, and age reasons. The existing automated PCa classification systems face difficulties with overfitting issues, and non‐generalizability, leading to poor classification performance.
Objective
On this account, this study proposes an automated classification of PCa from MRI images using a hybrid weighted mean of vectors‐optimized DarkNet53 classifier model.
Methodology
The proposed method suggests nonlocal mean filtering for noise reduction, N4ITK bias field correction to enhance image quality, and active contour‐based segmentation for accurately identifying the disease region. The feature extraction utilizes the gray level run length matrix and shape features for effective feature extraction. A weighted mean of vectors optimization is used to optimize the feature selection process by hybridizing it with the DarkNet53 model for classification. Finally, the interpretation of achieving the classification has been demonstrated using the explainable AI Grad‐CAM model.
Results
After comparing the proposed work with various state‐of‐the‐art algorithms, the proposed model achieves 99.31% accuracy, 98.24% sensitivity, and 98.46% specificity, respectively, highlighting the model's accomplishment using the DarkNet53 classifier.</description><subject>Algorithms</subject><subject>Automation</subject><subject>Classification</subject><subject>Classification systems</subject><subject>DarkNet53 model</subject><subject>Grad‐CAM</subject><subject>Humans</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Image processing</subject><subject>Magnetic resonance imaging</subject><subject>Male</subject><subject>Multiparametric Magnetic Resonance Imaging - methods</subject><subject>Neoplasm Grading - methods</subject><subject>Noise reduction</subject><subject>Prostate cancer</subject><subject>Prostatic Neoplasms - classification</subject><subject>Prostatic Neoplasms - diagnostic imaging</subject><subject>Prostatic Neoplasms - pathology</subject><subject>weighted mean of vectors optimization</subject><issn>0270-4137</issn><issn>1097-0045</issn><issn>1097-0045</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNp9kc9u1DAQhy0EotvChQdAlrigSin-lzg5oqVdVurSqqXiGM06k8Ulcba2o6pP0VfGaQoHDpw8mvn82ZofIe84O-GMiU97P4QToUqhX5AFZ5XOGFP5S7JgQrNMcakPyGEIt4wlnInX5EBWeakKXi7I42W6HCEiXYIz6OmygxBsaw1EOzgKrqFrF9HvPca59cPGn3QzdtHuwUOP0VtDN7BzGFNxhWFwk4que9hZt3tSrDqE1KcrDw3SazN4pDdhmn4B_-sbxlzSzdBg94a8aqEL-Pb5PCI3Z6ffl1-z84vVevn5PDNCFTrbtlhyJUqtJd8yXQkhW4CGaaY55waNBlMYBYhCV6ZiicEmL4AzLDFnWh6Rj7M3Le9uxBDr3gaDXQcOhzHUkktR8PSWSuiHf9DbYfQu_S5RuVQVL8pJeDxTJi00eGzrvbc9-Ieas3qKqZ5iqp9iSvD7Z-W47bH5i_7JJQF8Bu5thw__UdWXVxfXs_Q3r2SeRw</recordid><startdate>202502</startdate><enddate>202502</enddate><creator>Gladis Pushparathi, Vasantha Pragasam</creator><creator>Justin Xavier, Dhas</creator><creator>Chitra, Pandian</creator><creator>Kannan, Gopalraj</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7T5</scope><scope>7TO</scope><scope>8FD</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0009-0008-7227-3530</orcidid></search><sort><creationdate>202502</creationdate><title>Prostate Cancer Classification and Interpretation With Multiparametric Magnetic Resonance Imaging and Gleason Grade Score Using DarkNet53 Model</title><author>Gladis Pushparathi, Vasantha Pragasam ; Justin Xavier, Dhas ; Chitra, Pandian ; Kannan, Gopalraj</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2467-bfe814287731b079223faad0707111cec7ac6c4aee279c90b07ed56a10e8e5073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Algorithms</topic><topic>Automation</topic><topic>Classification</topic><topic>Classification systems</topic><topic>DarkNet53 model</topic><topic>Grad‐CAM</topic><topic>Humans</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Image processing</topic><topic>Magnetic resonance imaging</topic><topic>Male</topic><topic>Multiparametric Magnetic Resonance Imaging - methods</topic><topic>Neoplasm Grading - methods</topic><topic>Noise reduction</topic><topic>Prostate cancer</topic><topic>Prostatic Neoplasms - classification</topic><topic>Prostatic Neoplasms - diagnostic imaging</topic><topic>Prostatic Neoplasms - pathology</topic><topic>weighted mean of vectors optimization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gladis Pushparathi, Vasantha Pragasam</creatorcontrib><creatorcontrib>Justin Xavier, Dhas</creatorcontrib><creatorcontrib>Chitra, Pandian</creatorcontrib><creatorcontrib>Kannan, Gopalraj</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Immunology Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>The Prostate</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gladis Pushparathi, Vasantha Pragasam</au><au>Justin Xavier, Dhas</au><au>Chitra, Pandian</au><au>Kannan, Gopalraj</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prostate Cancer Classification and Interpretation With Multiparametric Magnetic Resonance Imaging and Gleason Grade Score Using DarkNet53 Model</atitle><jtitle>The Prostate</jtitle><addtitle>Prostate</addtitle><date>2025-02</date><risdate>2025</risdate><volume>85</volume><issue>3</issue><spage>294</spage><epage>307</epage><pages>294-307</pages><issn>0270-4137</issn><issn>1097-0045</issn><eissn>1097-0045</eissn><abstract>ABSTRACT
Background
Prostate Cancer (PCa) increases the mortality rate of males worldwide and is caused by genetics, lifestyle, and age reasons. The existing automated PCa classification systems face difficulties with overfitting issues, and non‐generalizability, leading to poor classification performance.
Objective
On this account, this study proposes an automated classification of PCa from MRI images using a hybrid weighted mean of vectors‐optimized DarkNet53 classifier model.
Methodology
The proposed method suggests nonlocal mean filtering for noise reduction, N4ITK bias field correction to enhance image quality, and active contour‐based segmentation for accurately identifying the disease region. The feature extraction utilizes the gray level run length matrix and shape features for effective feature extraction. A weighted mean of vectors optimization is used to optimize the feature selection process by hybridizing it with the DarkNet53 model for classification. Finally, the interpretation of achieving the classification has been demonstrated using the explainable AI Grad‐CAM model.
Results
After comparing the proposed work with various state‐of‐the‐art algorithms, the proposed model achieves 99.31% accuracy, 98.24% sensitivity, and 98.46% specificity, respectively, highlighting the model's accomplishment using the DarkNet53 classifier.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>39584618</pmid><doi>10.1002/pros.24827</doi><tpages>14</tpages><orcidid>https://orcid.org/0009-0008-7227-3530</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0270-4137 |
ispartof | The Prostate, 2025-02, Vol.85 (3), p.294-307 |
issn | 0270-4137 1097-0045 1097-0045 |
language | eng |
recordid | cdi_proquest_miscellaneous_3132612464 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Algorithms Automation Classification Classification systems DarkNet53 model Grad‐CAM Humans Image Interpretation, Computer-Assisted - methods Image processing Magnetic resonance imaging Male Multiparametric Magnetic Resonance Imaging - methods Neoplasm Grading - methods Noise reduction Prostate cancer Prostatic Neoplasms - classification Prostatic Neoplasms - diagnostic imaging Prostatic Neoplasms - pathology weighted mean of vectors optimization |
title | Prostate Cancer Classification and Interpretation With Multiparametric Magnetic Resonance Imaging and Gleason Grade Score Using DarkNet53 Model |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T22%3A06%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prostate%20Cancer%20Classification%20and%20Interpretation%20With%20Multiparametric%20Magnetic%20Resonance%20Imaging%20and%20Gleason%20Grade%20Score%20Using%20DarkNet53%20Model&rft.jtitle=The%20Prostate&rft.au=Gladis%20Pushparathi,%20Vasantha%20Pragasam&rft.date=2025-02&rft.volume=85&rft.issue=3&rft.spage=294&rft.epage=307&rft.pages=294-307&rft.issn=0270-4137&rft.eissn=1097-0045&rft_id=info:doi/10.1002/pros.24827&rft_dat=%3Cproquest_cross%3E3153491687%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2467-bfe814287731b079223faad0707111cec7ac6c4aee279c90b07ed56a10e8e5073%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3153491687&rft_id=info:pmid/39584618&rfr_iscdi=true |