Loading…

Citronellol protects renal function by exerting anti-inflammatory and antiapoptotic effects against acute kidney injury induced by folic acid in mice

Acute kidney injury (AKI) is characterized by an abrupt cessation of kidney function. Folic acid-induced renal tubular damage is marked by immense inflammation and apoptosis in the kidney. Citronellol is a type of natural monoterpene alcohol commonly used in traditional medicine. Citronellol possess...

Full description

Saved in:
Bibliographic Details
Published in:Naunyn-Schmiedeberg's archives of pharmacology 2024-12
Main Authors: Jamal, Meera Ziyad, Kathem, Sarmed H
Format: Article
Language:English
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Acute kidney injury (AKI) is characterized by an abrupt cessation of kidney function. Folic acid-induced renal tubular damage is marked by immense inflammation and apoptosis in the kidney. Citronellol is a type of natural monoterpene alcohol commonly used in traditional medicine. Citronellol possesses pharmacological properties such as antioxidants, anti-inflammatory, and analgesic effects. This study aimed to investigate the reno-protective effect of citronellol against folic acid-induced AKI in mice models. Mice were divided into four groups. In addition to control and AKI-induction groups, two treatment groups were mice that received 50 or 100 mg/kg/day of citronellol orally for four consecutive days. On day 4, mice also received a single injection of folic acid (250 mg/kg) and were euthanized after 48 h. Citronellol 50 and 100 mg/kg rescued renal function as indicated by the significant reduction of serum urea, serum creatinine, and gene expression of KIM-1 compared to the non-treated group. In addition, citronellol 50 and 100 mg/kg relieved renal inflammation by significantly downregulating NF-κB, IL-6, and IL-1β gene expressions compared to the non-treated mice. Furthermore, citronellol retarded renal apoptotic events by the significant decline in renal tissue BAX and cleaved caspase-3 levels compared to non-treated mice. Histopathological report of renal tissue provides further evidence that augments the above results. The study highlighted the importance of some natural compounds that could have a place in therapeutic procedures for kidney injury, as observed by the strong renal protective effects of citronellol against AKI and remarkable anti-inflammatory and antiapoptotic actions.
ISSN:1432-1912
1432-1912
DOI:10.1007/s00210-024-03677-5