Loading…

Design and Synthesis of Thioglycosylated Monolignol Dual Probes for Bioimaging of Lignin Biosynthesis

Lignin biosynthesis is a critical process that underpins plant structural integrity and defenses. Central to this pathway are monolignol glucosides (MLGs), whose role as intermediates remains debated. To elucidate MLGs' involvement, we developed thioglycosylated monolignol probes compatible wit...

Full description

Saved in:
Bibliographic Details
Published in:Chemistry : a European journal 2024-12, p.e202404117
Main Authors: Simon, Clémence, Zhu, Mingxiang, Lion, Cédric, Spriet, Corentin, Hemry, Maxence, Neutelings, Godfrey, Messaoudi, Samir, Biot, Christophe
Format: Article
Language:English
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page e202404117
container_title Chemistry : a European journal
container_volume
creator Simon, Clémence
Zhu, Mingxiang
Lion, Cédric
Spriet, Corentin
Hemry, Maxence
Neutelings, Godfrey
Messaoudi, Samir
Biot, Christophe
description Lignin biosynthesis is a critical process that underpins plant structural integrity and defenses. Central to this pathway are monolignol glucosides (MLGs), whose role as intermediates remains debated. To elucidate MLGs' involvement, we developed thioglycosylated monolignol probes compatible with click chemistry for in situ visualization of lignin biosynthesis. Using a highly selective Buchwald-Hartwig-Migita cross-coupling approach, these probes incorporate glycosyl thiols into MLGs, creating stable thioacetal bonds to enhance both metabolic stability and tracking precision. The unique chemistry of these probes allows for incorporation within the lignification pathway, enabling specific visualization of MLG involvement in lignin formation. The probes are compatible with bioorthogonal chemistry labeling and confocal microscopy, allowing detailed tracking of MLG transport, storage, and incorporation into cell walls. Our findings provide new insights into lignification dynamics, underscoring the metabolic roles of MLGs and demonstrating their potential as metabolic intermediates in lignin polymerization. This approach offers a novel chemical biology toolset to dissect plant cell wall biosynthesis and will help elucidatethe molecular roles of MLGs in the context of plant biochemistry and resilience.
doi_str_mv 10.1002/chem.202404117
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_3140922808</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3140922808</sourcerecordid><originalsourceid>FETCH-LOGICAL-p141t-aa225074090b6a9d62b5621584484864146ddb0a1353e2f0b4f16f00caa79dee3</originalsourceid><addsrcrecordid>eNpNkDtPwzAQgC0EoqWwMiKPLCnnR5xkhJaXFAQSZY6c2EmNnLjEyZB_jytaieke-u7T3SF0TWBJAOhdtdXtkgLlwAlJTtCcxJRELBHx6b98hi68_waATDB2jmYsE5QIkc6RXmtvmg7LTuHPqRu2ofTY1XizNa6xU-X8ZOWgFX5znbMBdRavR2nxR-9K7XHtevxgnGllY7pmP5kHyHT7pj8KL9FZLa3XV4e4QF9Pj5vVS5S_P7-u7vNoRzgZIikpjSHhkEEpZKYELeOwaJxynvJUcMKFUiVIwmKmaQ0lr4moASopk0xpzRbo9s-7693PqP1QtMZX2lrZaTf6gpHgpjSFNKA3B3QsW62KXR9O6Kfi-Br2C1uMZjw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3140922808</pqid></control><display><type>article</type><title>Design and Synthesis of Thioglycosylated Monolignol Dual Probes for Bioimaging of Lignin Biosynthesis</title><source>Wiley</source><creator>Simon, Clémence ; Zhu, Mingxiang ; Lion, Cédric ; Spriet, Corentin ; Hemry, Maxence ; Neutelings, Godfrey ; Messaoudi, Samir ; Biot, Christophe</creator><creatorcontrib>Simon, Clémence ; Zhu, Mingxiang ; Lion, Cédric ; Spriet, Corentin ; Hemry, Maxence ; Neutelings, Godfrey ; Messaoudi, Samir ; Biot, Christophe</creatorcontrib><description>Lignin biosynthesis is a critical process that underpins plant structural integrity and defenses. Central to this pathway are monolignol glucosides (MLGs), whose role as intermediates remains debated. To elucidate MLGs' involvement, we developed thioglycosylated monolignol probes compatible with click chemistry for in situ visualization of lignin biosynthesis. Using a highly selective Buchwald-Hartwig-Migita cross-coupling approach, these probes incorporate glycosyl thiols into MLGs, creating stable thioacetal bonds to enhance both metabolic stability and tracking precision. The unique chemistry of these probes allows for incorporation within the lignification pathway, enabling specific visualization of MLG involvement in lignin formation. The probes are compatible with bioorthogonal chemistry labeling and confocal microscopy, allowing detailed tracking of MLG transport, storage, and incorporation into cell walls. Our findings provide new insights into lignification dynamics, underscoring the metabolic roles of MLGs and demonstrating their potential as metabolic intermediates in lignin polymerization. This approach offers a novel chemical biology toolset to dissect plant cell wall biosynthesis and will help elucidatethe molecular roles of MLGs in the context of plant biochemistry and resilience.</description><identifier>ISSN: 1521-3765</identifier><identifier>EISSN: 1521-3765</identifier><identifier>DOI: 10.1002/chem.202404117</identifier><identifier>PMID: 39621668</identifier><language>eng</language><publisher>Germany</publisher><ispartof>Chemistry : a European journal, 2024-12, p.e202404117</ispartof><rights>2024 The Author(s). Chemistry - A European Journal published by Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-4994-9001 ; 0000-0001-6591-4573 ; 0000-0002-7396-1959 ; 0000-0002-5805-3426 ; 0000-0002-1368-9551 ; 0000-0002-4017-6639</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39621668$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Simon, Clémence</creatorcontrib><creatorcontrib>Zhu, Mingxiang</creatorcontrib><creatorcontrib>Lion, Cédric</creatorcontrib><creatorcontrib>Spriet, Corentin</creatorcontrib><creatorcontrib>Hemry, Maxence</creatorcontrib><creatorcontrib>Neutelings, Godfrey</creatorcontrib><creatorcontrib>Messaoudi, Samir</creatorcontrib><creatorcontrib>Biot, Christophe</creatorcontrib><title>Design and Synthesis of Thioglycosylated Monolignol Dual Probes for Bioimaging of Lignin Biosynthesis</title><title>Chemistry : a European journal</title><addtitle>Chemistry</addtitle><description>Lignin biosynthesis is a critical process that underpins plant structural integrity and defenses. Central to this pathway are monolignol glucosides (MLGs), whose role as intermediates remains debated. To elucidate MLGs' involvement, we developed thioglycosylated monolignol probes compatible with click chemistry for in situ visualization of lignin biosynthesis. Using a highly selective Buchwald-Hartwig-Migita cross-coupling approach, these probes incorporate glycosyl thiols into MLGs, creating stable thioacetal bonds to enhance both metabolic stability and tracking precision. The unique chemistry of these probes allows for incorporation within the lignification pathway, enabling specific visualization of MLG involvement in lignin formation. The probes are compatible with bioorthogonal chemistry labeling and confocal microscopy, allowing detailed tracking of MLG transport, storage, and incorporation into cell walls. Our findings provide new insights into lignification dynamics, underscoring the metabolic roles of MLGs and demonstrating their potential as metabolic intermediates in lignin polymerization. This approach offers a novel chemical biology toolset to dissect plant cell wall biosynthesis and will help elucidatethe molecular roles of MLGs in the context of plant biochemistry and resilience.</description><issn>1521-3765</issn><issn>1521-3765</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkDtPwzAQgC0EoqWwMiKPLCnnR5xkhJaXFAQSZY6c2EmNnLjEyZB_jytaieke-u7T3SF0TWBJAOhdtdXtkgLlwAlJTtCcxJRELBHx6b98hi68_waATDB2jmYsE5QIkc6RXmtvmg7LTuHPqRu2ofTY1XizNa6xU-X8ZOWgFX5znbMBdRavR2nxR-9K7XHtevxgnGllY7pmP5kHyHT7pj8KL9FZLa3XV4e4QF9Pj5vVS5S_P7-u7vNoRzgZIikpjSHhkEEpZKYELeOwaJxynvJUcMKFUiVIwmKmaQ0lr4moASopk0xpzRbo9s-7693PqP1QtMZX2lrZaTf6gpHgpjSFNKA3B3QsW62KXR9O6Kfi-Br2C1uMZjw</recordid><startdate>20241202</startdate><enddate>20241202</enddate><creator>Simon, Clémence</creator><creator>Zhu, Mingxiang</creator><creator>Lion, Cédric</creator><creator>Spriet, Corentin</creator><creator>Hemry, Maxence</creator><creator>Neutelings, Godfrey</creator><creator>Messaoudi, Samir</creator><creator>Biot, Christophe</creator><scope>NPM</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4994-9001</orcidid><orcidid>https://orcid.org/0000-0001-6591-4573</orcidid><orcidid>https://orcid.org/0000-0002-7396-1959</orcidid><orcidid>https://orcid.org/0000-0002-5805-3426</orcidid><orcidid>https://orcid.org/0000-0002-1368-9551</orcidid><orcidid>https://orcid.org/0000-0002-4017-6639</orcidid></search><sort><creationdate>20241202</creationdate><title>Design and Synthesis of Thioglycosylated Monolignol Dual Probes for Bioimaging of Lignin Biosynthesis</title><author>Simon, Clémence ; Zhu, Mingxiang ; Lion, Cédric ; Spriet, Corentin ; Hemry, Maxence ; Neutelings, Godfrey ; Messaoudi, Samir ; Biot, Christophe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p141t-aa225074090b6a9d62b5621584484864146ddb0a1353e2f0b4f16f00caa79dee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Simon, Clémence</creatorcontrib><creatorcontrib>Zhu, Mingxiang</creatorcontrib><creatorcontrib>Lion, Cédric</creatorcontrib><creatorcontrib>Spriet, Corentin</creatorcontrib><creatorcontrib>Hemry, Maxence</creatorcontrib><creatorcontrib>Neutelings, Godfrey</creatorcontrib><creatorcontrib>Messaoudi, Samir</creatorcontrib><creatorcontrib>Biot, Christophe</creatorcontrib><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>Chemistry : a European journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Simon, Clémence</au><au>Zhu, Mingxiang</au><au>Lion, Cédric</au><au>Spriet, Corentin</au><au>Hemry, Maxence</au><au>Neutelings, Godfrey</au><au>Messaoudi, Samir</au><au>Biot, Christophe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design and Synthesis of Thioglycosylated Monolignol Dual Probes for Bioimaging of Lignin Biosynthesis</atitle><jtitle>Chemistry : a European journal</jtitle><addtitle>Chemistry</addtitle><date>2024-12-02</date><risdate>2024</risdate><spage>e202404117</spage><pages>e202404117-</pages><issn>1521-3765</issn><eissn>1521-3765</eissn><abstract>Lignin biosynthesis is a critical process that underpins plant structural integrity and defenses. Central to this pathway are monolignol glucosides (MLGs), whose role as intermediates remains debated. To elucidate MLGs' involvement, we developed thioglycosylated monolignol probes compatible with click chemistry for in situ visualization of lignin biosynthesis. Using a highly selective Buchwald-Hartwig-Migita cross-coupling approach, these probes incorporate glycosyl thiols into MLGs, creating stable thioacetal bonds to enhance both metabolic stability and tracking precision. The unique chemistry of these probes allows for incorporation within the lignification pathway, enabling specific visualization of MLG involvement in lignin formation. The probes are compatible with bioorthogonal chemistry labeling and confocal microscopy, allowing detailed tracking of MLG transport, storage, and incorporation into cell walls. Our findings provide new insights into lignification dynamics, underscoring the metabolic roles of MLGs and demonstrating their potential as metabolic intermediates in lignin polymerization. This approach offers a novel chemical biology toolset to dissect plant cell wall biosynthesis and will help elucidatethe molecular roles of MLGs in the context of plant biochemistry and resilience.</abstract><cop>Germany</cop><pmid>39621668</pmid><doi>10.1002/chem.202404117</doi><orcidid>https://orcid.org/0000-0002-4994-9001</orcidid><orcidid>https://orcid.org/0000-0001-6591-4573</orcidid><orcidid>https://orcid.org/0000-0002-7396-1959</orcidid><orcidid>https://orcid.org/0000-0002-5805-3426</orcidid><orcidid>https://orcid.org/0000-0002-1368-9551</orcidid><orcidid>https://orcid.org/0000-0002-4017-6639</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1521-3765
ispartof Chemistry : a European journal, 2024-12, p.e202404117
issn 1521-3765
1521-3765
language eng
recordid cdi_proquest_miscellaneous_3140922808
source Wiley
title Design and Synthesis of Thioglycosylated Monolignol Dual Probes for Bioimaging of Lignin Biosynthesis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T22%3A50%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20and%20Synthesis%20of%20Thioglycosylated%20Monolignol%20Dual%20Probes%20for%20Bioimaging%20of%20Lignin%20Biosynthesis&rft.jtitle=Chemistry%20:%20a%20European%20journal&rft.au=Simon,%20Cl%C3%A9mence&rft.date=2024-12-02&rft.spage=e202404117&rft.pages=e202404117-&rft.issn=1521-3765&rft.eissn=1521-3765&rft_id=info:doi/10.1002/chem.202404117&rft_dat=%3Cproquest_pubme%3E3140922808%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p141t-aa225074090b6a9d62b5621584484864146ddb0a1353e2f0b4f16f00caa79dee3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3140922808&rft_id=info:pmid/39621668&rfr_iscdi=true