Loading…

Enhancing immuno-oncology investigations through multidimensional decoding of tumor microenvironment with IOBR 2.0

The use of large transcriptome datasets has greatly improved our understanding of the tumor microenvironment (TME) and helped develop precise immunotherapies. The growing application of multi-omics, single-cell RNA sequencing (scRNA-seq), and spatial transcriptome sequencing has led to many new insi...

Full description

Saved in:
Bibliographic Details
Published in:Cell reports methods 2024-12, Vol.4 (12), p.100910, Article 100910
Main Authors: Zeng, Dongqiang, Fang, Yiran, Qiu, Wenjun, Luo, Peng, Wang, Shixiang, Shen, Rongfang, Gu, Wenchao, Huang, Xiatong, Mao, Qianqian, Wang, Gaofeng, Lai, Yonghong, Rong, Guangda, Xu, Xi, Shi, Min, Wu, Zuqiang, Yu, Guangchuang, Liao, Wangjun
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue 12
container_start_page 100910
container_title Cell reports methods
container_volume 4
creator Zeng, Dongqiang
Fang, Yiran
Qiu, Wenjun
Luo, Peng
Wang, Shixiang
Shen, Rongfang
Gu, Wenchao
Huang, Xiatong
Mao, Qianqian
Wang, Gaofeng
Lai, Yonghong
Rong, Guangda
Xu, Xi
Shi, Min
Wu, Zuqiang
Yu, Guangchuang
Liao, Wangjun
description The use of large transcriptome datasets has greatly improved our understanding of the tumor microenvironment (TME) and helped develop precise immunotherapies. The growing application of multi-omics, single-cell RNA sequencing (scRNA-seq), and spatial transcriptome sequencing has led to many new insights, yet these findings still require clinical validation in large cohorts. To advance multi-omics integration in TME research, we have upgraded the Immuno-Oncology Biological Research (IOBR) package to IOBR 2.0, restructuring and standardizing its analytical workflow. IOBR 2.0 offers six modules for TME analysis based on multi-omics data, including data preprocessing, TME estimation, TME infiltration pattern identification, cellular interaction analysis, genome and TME interaction, and feature visualization, as well as modeling. Additionally, IOBR 2.0 enables constructing gene signatures and reference matrices from scRNA-seq data for TME deconvolution. The user-friendly pipeline provides comprehensive insights into tumor-immune interactions, and a detailed GitBook(https://iobr.github.io/book/) offers a complete manual and analysis guide for each module. [Display omitted] •IOBR 2.0 offers a pipeline for TME analysis and biomarker identification•Includes six modules for RNA data preprocessing, TME profiling, genome-TME interactions•Integrates 10 deconvolution methods and 322 TME-related gene signatures•Supports phenotypic analysis in bulk RNA-seq data using single-cell features The growing use of immunotherapy has highlighted the critical role of the TME in influencing treatment outcomes. Advances in sequencing technologies have enabled researchers to analyze the TME from multiple perspectives, leading to new insights. However, the complexity and volume of multi-omics data present challenges for analysis and interpretation. To address these, we present IOBR 2.0, an upgraded version of IOBR 1.0 that works as an integrated tool that simplifies TME analysis and visualization using multi-omics data. IOBR 2.0 enables researchers to systematically investigate TME characteristics and identify biomarkers for immunotherapy outcomes. Zeng et al. present IOBR 2.0, a comprehensive and user-friendly toolkit for TME profiling and biomarker discovery in multi-omics studies, updated from IOBR 1.0. Featuring six integrated analysis modules, IOBR 2.0 facilitates the exploration of TME patterns, genome-TME interactions, and single-cell characteristics within bulk RNA-seq data, off
doi_str_mv 10.1016/j.crmeth.2024.100910
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_3140927363</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S266723752400300X</els_id><sourcerecordid>3140927363</sourcerecordid><originalsourceid>FETCH-LOGICAL-e1570-c13bc7ed0eb0d8a3206de3b37508a66c830746d6f912361bebca115b260d340f3</originalsourceid><addsrcrecordid>eNpNkUFLJDEQhYO4rOL6DxbJ0UuPlWQ6PX1ZUHFXQRBEzyGd1Exn6CRukh7x32-GccFTFVUfj3r1CPnJYMGAyavtwiSPZVxw4Ms6gp7BETnlUnYNF117_KU_Iec5bwGAt0yInn0nJ6KXdS3bU5LuwqiDcWFDnfdziE0MJk5x80Fd2GEubqOLiyHTMqY4b0bq56k46zyGXOd6ohZNtHuBuKZl9jFR70yKGHYuxVC5Qt9dGenD080z5Qv4Qb6t9ZTx_LOekdffdy-3983j05-H2-vHBlnbQWOYGEyHFnAAu9KCg7QohmoIVlpKsxLQLaWV655xIdmAg9GMtQOXYMUS1uKMXB5031L8O1cryrtscJp0wDhnJdgSet4JKSp68YnOg0er3pLzOn2o_3-qwK8DgPXgncOksnEYDFqX0BRlo1MM1D4btVWHbNQ-G3XIRvwDU6WDng</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3140927363</pqid></control><display><type>article</type><title>Enhancing immuno-oncology investigations through multidimensional decoding of tumor microenvironment with IOBR 2.0</title><source>Open Access: PubMed Central</source><source>ScienceDirect Journals</source><creator>Zeng, Dongqiang ; Fang, Yiran ; Qiu, Wenjun ; Luo, Peng ; Wang, Shixiang ; Shen, Rongfang ; Gu, Wenchao ; Huang, Xiatong ; Mao, Qianqian ; Wang, Gaofeng ; Lai, Yonghong ; Rong, Guangda ; Xu, Xi ; Shi, Min ; Wu, Zuqiang ; Yu, Guangchuang ; Liao, Wangjun</creator><creatorcontrib>Zeng, Dongqiang ; Fang, Yiran ; Qiu, Wenjun ; Luo, Peng ; Wang, Shixiang ; Shen, Rongfang ; Gu, Wenchao ; Huang, Xiatong ; Mao, Qianqian ; Wang, Gaofeng ; Lai, Yonghong ; Rong, Guangda ; Xu, Xi ; Shi, Min ; Wu, Zuqiang ; Yu, Guangchuang ; Liao, Wangjun</creatorcontrib><description>The use of large transcriptome datasets has greatly improved our understanding of the tumor microenvironment (TME) and helped develop precise immunotherapies. The growing application of multi-omics, single-cell RNA sequencing (scRNA-seq), and spatial transcriptome sequencing has led to many new insights, yet these findings still require clinical validation in large cohorts. To advance multi-omics integration in TME research, we have upgraded the Immuno-Oncology Biological Research (IOBR) package to IOBR 2.0, restructuring and standardizing its analytical workflow. IOBR 2.0 offers six modules for TME analysis based on multi-omics data, including data preprocessing, TME estimation, TME infiltration pattern identification, cellular interaction analysis, genome and TME interaction, and feature visualization, as well as modeling. Additionally, IOBR 2.0 enables constructing gene signatures and reference matrices from scRNA-seq data for TME deconvolution. The user-friendly pipeline provides comprehensive insights into tumor-immune interactions, and a detailed GitBook(https://iobr.github.io/book/) offers a complete manual and analysis guide for each module. [Display omitted] •IOBR 2.0 offers a pipeline for TME analysis and biomarker identification•Includes six modules for RNA data preprocessing, TME profiling, genome-TME interactions•Integrates 10 deconvolution methods and 322 TME-related gene signatures•Supports phenotypic analysis in bulk RNA-seq data using single-cell features The growing use of immunotherapy has highlighted the critical role of the TME in influencing treatment outcomes. Advances in sequencing technologies have enabled researchers to analyze the TME from multiple perspectives, leading to new insights. However, the complexity and volume of multi-omics data present challenges for analysis and interpretation. To address these, we present IOBR 2.0, an upgraded version of IOBR 1.0 that works as an integrated tool that simplifies TME analysis and visualization using multi-omics data. IOBR 2.0 enables researchers to systematically investigate TME characteristics and identify biomarkers for immunotherapy outcomes. Zeng et al. present IOBR 2.0, a comprehensive and user-friendly toolkit for TME profiling and biomarker discovery in multi-omics studies, updated from IOBR 1.0. Featuring six integrated analysis modules, IOBR 2.0 facilitates the exploration of TME patterns, genome-TME interactions, and single-cell characteristics within bulk RNA-seq data, offering comprehensive visualization functions and enhancing our understanding of tumor-immune interactions.</description><identifier>ISSN: 2667-2375</identifier><identifier>EISSN: 2667-2375</identifier><identifier>DOI: 10.1016/j.crmeth.2024.100910</identifier><identifier>PMID: 39626665</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Computational Biology - methods ; Gene Expression Profiling - methods ; gene signatures ; Humans ; immunotherapy ; Immunotherapy - methods ; multi-omics ; Neoplasms - genetics ; Neoplasms - immunology ; Neoplasms - pathology ; Sequence Analysis, RNA ; Single-Cell Analysis - methods ; single-cell data ; Software ; Transcriptome ; tumor microenvironment ; Tumor Microenvironment - immunology ; tumor-immune interaction ; tumor-metabolism</subject><ispartof>Cell reports methods, 2024-12, Vol.4 (12), p.100910, Article 100910</ispartof><rights>2024 The Author(s)</rights><rights>Copyright © 2024 The Author(s). Published by Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-1364-8442 ; 0000-0002-6485-8781</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S266723752400300X$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3549,27924,27925,45780</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39626665$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zeng, Dongqiang</creatorcontrib><creatorcontrib>Fang, Yiran</creatorcontrib><creatorcontrib>Qiu, Wenjun</creatorcontrib><creatorcontrib>Luo, Peng</creatorcontrib><creatorcontrib>Wang, Shixiang</creatorcontrib><creatorcontrib>Shen, Rongfang</creatorcontrib><creatorcontrib>Gu, Wenchao</creatorcontrib><creatorcontrib>Huang, Xiatong</creatorcontrib><creatorcontrib>Mao, Qianqian</creatorcontrib><creatorcontrib>Wang, Gaofeng</creatorcontrib><creatorcontrib>Lai, Yonghong</creatorcontrib><creatorcontrib>Rong, Guangda</creatorcontrib><creatorcontrib>Xu, Xi</creatorcontrib><creatorcontrib>Shi, Min</creatorcontrib><creatorcontrib>Wu, Zuqiang</creatorcontrib><creatorcontrib>Yu, Guangchuang</creatorcontrib><creatorcontrib>Liao, Wangjun</creatorcontrib><title>Enhancing immuno-oncology investigations through multidimensional decoding of tumor microenvironment with IOBR 2.0</title><title>Cell reports methods</title><addtitle>Cell Rep Methods</addtitle><description>The use of large transcriptome datasets has greatly improved our understanding of the tumor microenvironment (TME) and helped develop precise immunotherapies. The growing application of multi-omics, single-cell RNA sequencing (scRNA-seq), and spatial transcriptome sequencing has led to many new insights, yet these findings still require clinical validation in large cohorts. To advance multi-omics integration in TME research, we have upgraded the Immuno-Oncology Biological Research (IOBR) package to IOBR 2.0, restructuring and standardizing its analytical workflow. IOBR 2.0 offers six modules for TME analysis based on multi-omics data, including data preprocessing, TME estimation, TME infiltration pattern identification, cellular interaction analysis, genome and TME interaction, and feature visualization, as well as modeling. Additionally, IOBR 2.0 enables constructing gene signatures and reference matrices from scRNA-seq data for TME deconvolution. The user-friendly pipeline provides comprehensive insights into tumor-immune interactions, and a detailed GitBook(https://iobr.github.io/book/) offers a complete manual and analysis guide for each module. [Display omitted] •IOBR 2.0 offers a pipeline for TME analysis and biomarker identification•Includes six modules for RNA data preprocessing, TME profiling, genome-TME interactions•Integrates 10 deconvolution methods and 322 TME-related gene signatures•Supports phenotypic analysis in bulk RNA-seq data using single-cell features The growing use of immunotherapy has highlighted the critical role of the TME in influencing treatment outcomes. Advances in sequencing technologies have enabled researchers to analyze the TME from multiple perspectives, leading to new insights. However, the complexity and volume of multi-omics data present challenges for analysis and interpretation. To address these, we present IOBR 2.0, an upgraded version of IOBR 1.0 that works as an integrated tool that simplifies TME analysis and visualization using multi-omics data. IOBR 2.0 enables researchers to systematically investigate TME characteristics and identify biomarkers for immunotherapy outcomes. Zeng et al. present IOBR 2.0, a comprehensive and user-friendly toolkit for TME profiling and biomarker discovery in multi-omics studies, updated from IOBR 1.0. Featuring six integrated analysis modules, IOBR 2.0 facilitates the exploration of TME patterns, genome-TME interactions, and single-cell characteristics within bulk RNA-seq data, offering comprehensive visualization functions and enhancing our understanding of tumor-immune interactions.</description><subject>Computational Biology - methods</subject><subject>Gene Expression Profiling - methods</subject><subject>gene signatures</subject><subject>Humans</subject><subject>immunotherapy</subject><subject>Immunotherapy - methods</subject><subject>multi-omics</subject><subject>Neoplasms - genetics</subject><subject>Neoplasms - immunology</subject><subject>Neoplasms - pathology</subject><subject>Sequence Analysis, RNA</subject><subject>Single-Cell Analysis - methods</subject><subject>single-cell data</subject><subject>Software</subject><subject>Transcriptome</subject><subject>tumor microenvironment</subject><subject>Tumor Microenvironment - immunology</subject><subject>tumor-immune interaction</subject><subject>tumor-metabolism</subject><issn>2667-2375</issn><issn>2667-2375</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkUFLJDEQhYO4rOL6DxbJ0UuPlWQ6PX1ZUHFXQRBEzyGd1Exn6CRukh7x32-GccFTFVUfj3r1CPnJYMGAyavtwiSPZVxw4Ms6gp7BETnlUnYNF117_KU_Iec5bwGAt0yInn0nJ6KXdS3bU5LuwqiDcWFDnfdziE0MJk5x80Fd2GEubqOLiyHTMqY4b0bq56k46zyGXOd6ohZNtHuBuKZl9jFR70yKGHYuxVC5Qt9dGenD080z5Qv4Qb6t9ZTx_LOekdffdy-3983j05-H2-vHBlnbQWOYGEyHFnAAu9KCg7QohmoIVlpKsxLQLaWV655xIdmAg9GMtQOXYMUS1uKMXB5031L8O1cryrtscJp0wDhnJdgSet4JKSp68YnOg0er3pLzOn2o_3-qwK8DgPXgncOksnEYDFqX0BRlo1MM1D4btVWHbNQ-G3XIRvwDU6WDng</recordid><startdate>20241216</startdate><enddate>20241216</enddate><creator>Zeng, Dongqiang</creator><creator>Fang, Yiran</creator><creator>Qiu, Wenjun</creator><creator>Luo, Peng</creator><creator>Wang, Shixiang</creator><creator>Shen, Rongfang</creator><creator>Gu, Wenchao</creator><creator>Huang, Xiatong</creator><creator>Mao, Qianqian</creator><creator>Wang, Gaofeng</creator><creator>Lai, Yonghong</creator><creator>Rong, Guangda</creator><creator>Xu, Xi</creator><creator>Shi, Min</creator><creator>Wu, Zuqiang</creator><creator>Yu, Guangchuang</creator><creator>Liao, Wangjun</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1364-8442</orcidid><orcidid>https://orcid.org/0000-0002-6485-8781</orcidid></search><sort><creationdate>20241216</creationdate><title>Enhancing immuno-oncology investigations through multidimensional decoding of tumor microenvironment with IOBR 2.0</title><author>Zeng, Dongqiang ; Fang, Yiran ; Qiu, Wenjun ; Luo, Peng ; Wang, Shixiang ; Shen, Rongfang ; Gu, Wenchao ; Huang, Xiatong ; Mao, Qianqian ; Wang, Gaofeng ; Lai, Yonghong ; Rong, Guangda ; Xu, Xi ; Shi, Min ; Wu, Zuqiang ; Yu, Guangchuang ; Liao, Wangjun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-e1570-c13bc7ed0eb0d8a3206de3b37508a66c830746d6f912361bebca115b260d340f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Computational Biology - methods</topic><topic>Gene Expression Profiling - methods</topic><topic>gene signatures</topic><topic>Humans</topic><topic>immunotherapy</topic><topic>Immunotherapy - methods</topic><topic>multi-omics</topic><topic>Neoplasms - genetics</topic><topic>Neoplasms - immunology</topic><topic>Neoplasms - pathology</topic><topic>Sequence Analysis, RNA</topic><topic>Single-Cell Analysis - methods</topic><topic>single-cell data</topic><topic>Software</topic><topic>Transcriptome</topic><topic>tumor microenvironment</topic><topic>Tumor Microenvironment - immunology</topic><topic>tumor-immune interaction</topic><topic>tumor-metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zeng, Dongqiang</creatorcontrib><creatorcontrib>Fang, Yiran</creatorcontrib><creatorcontrib>Qiu, Wenjun</creatorcontrib><creatorcontrib>Luo, Peng</creatorcontrib><creatorcontrib>Wang, Shixiang</creatorcontrib><creatorcontrib>Shen, Rongfang</creatorcontrib><creatorcontrib>Gu, Wenchao</creatorcontrib><creatorcontrib>Huang, Xiatong</creatorcontrib><creatorcontrib>Mao, Qianqian</creatorcontrib><creatorcontrib>Wang, Gaofeng</creatorcontrib><creatorcontrib>Lai, Yonghong</creatorcontrib><creatorcontrib>Rong, Guangda</creatorcontrib><creatorcontrib>Xu, Xi</creatorcontrib><creatorcontrib>Shi, Min</creatorcontrib><creatorcontrib>Wu, Zuqiang</creatorcontrib><creatorcontrib>Yu, Guangchuang</creatorcontrib><creatorcontrib>Liao, Wangjun</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>Cell reports methods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zeng, Dongqiang</au><au>Fang, Yiran</au><au>Qiu, Wenjun</au><au>Luo, Peng</au><au>Wang, Shixiang</au><au>Shen, Rongfang</au><au>Gu, Wenchao</au><au>Huang, Xiatong</au><au>Mao, Qianqian</au><au>Wang, Gaofeng</au><au>Lai, Yonghong</au><au>Rong, Guangda</au><au>Xu, Xi</au><au>Shi, Min</au><au>Wu, Zuqiang</au><au>Yu, Guangchuang</au><au>Liao, Wangjun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhancing immuno-oncology investigations through multidimensional decoding of tumor microenvironment with IOBR 2.0</atitle><jtitle>Cell reports methods</jtitle><addtitle>Cell Rep Methods</addtitle><date>2024-12-16</date><risdate>2024</risdate><volume>4</volume><issue>12</issue><spage>100910</spage><pages>100910-</pages><artnum>100910</artnum><issn>2667-2375</issn><eissn>2667-2375</eissn><abstract>The use of large transcriptome datasets has greatly improved our understanding of the tumor microenvironment (TME) and helped develop precise immunotherapies. The growing application of multi-omics, single-cell RNA sequencing (scRNA-seq), and spatial transcriptome sequencing has led to many new insights, yet these findings still require clinical validation in large cohorts. To advance multi-omics integration in TME research, we have upgraded the Immuno-Oncology Biological Research (IOBR) package to IOBR 2.0, restructuring and standardizing its analytical workflow. IOBR 2.0 offers six modules for TME analysis based on multi-omics data, including data preprocessing, TME estimation, TME infiltration pattern identification, cellular interaction analysis, genome and TME interaction, and feature visualization, as well as modeling. Additionally, IOBR 2.0 enables constructing gene signatures and reference matrices from scRNA-seq data for TME deconvolution. The user-friendly pipeline provides comprehensive insights into tumor-immune interactions, and a detailed GitBook(https://iobr.github.io/book/) offers a complete manual and analysis guide for each module. [Display omitted] •IOBR 2.0 offers a pipeline for TME analysis and biomarker identification•Includes six modules for RNA data preprocessing, TME profiling, genome-TME interactions•Integrates 10 deconvolution methods and 322 TME-related gene signatures•Supports phenotypic analysis in bulk RNA-seq data using single-cell features The growing use of immunotherapy has highlighted the critical role of the TME in influencing treatment outcomes. Advances in sequencing technologies have enabled researchers to analyze the TME from multiple perspectives, leading to new insights. However, the complexity and volume of multi-omics data present challenges for analysis and interpretation. To address these, we present IOBR 2.0, an upgraded version of IOBR 1.0 that works as an integrated tool that simplifies TME analysis and visualization using multi-omics data. IOBR 2.0 enables researchers to systematically investigate TME characteristics and identify biomarkers for immunotherapy outcomes. Zeng et al. present IOBR 2.0, a comprehensive and user-friendly toolkit for TME profiling and biomarker discovery in multi-omics studies, updated from IOBR 1.0. Featuring six integrated analysis modules, IOBR 2.0 facilitates the exploration of TME patterns, genome-TME interactions, and single-cell characteristics within bulk RNA-seq data, offering comprehensive visualization functions and enhancing our understanding of tumor-immune interactions.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>39626665</pmid><doi>10.1016/j.crmeth.2024.100910</doi><orcidid>https://orcid.org/0000-0002-1364-8442</orcidid><orcidid>https://orcid.org/0000-0002-6485-8781</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2667-2375
ispartof Cell reports methods, 2024-12, Vol.4 (12), p.100910, Article 100910
issn 2667-2375
2667-2375
language eng
recordid cdi_proquest_miscellaneous_3140927363
source Open Access: PubMed Central; ScienceDirect Journals
subjects Computational Biology - methods
Gene Expression Profiling - methods
gene signatures
Humans
immunotherapy
Immunotherapy - methods
multi-omics
Neoplasms - genetics
Neoplasms - immunology
Neoplasms - pathology
Sequence Analysis, RNA
Single-Cell Analysis - methods
single-cell data
Software
Transcriptome
tumor microenvironment
Tumor Microenvironment - immunology
tumor-immune interaction
tumor-metabolism
title Enhancing immuno-oncology investigations through multidimensional decoding of tumor microenvironment with IOBR 2.0
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T00%3A19%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhancing%20immuno-oncology%20investigations%20through%20multidimensional%20decoding%20of%20tumor%20microenvironment%20with%20IOBR%202.0&rft.jtitle=Cell%20reports%20methods&rft.au=Zeng,%20Dongqiang&rft.date=2024-12-16&rft.volume=4&rft.issue=12&rft.spage=100910&rft.pages=100910-&rft.artnum=100910&rft.issn=2667-2375&rft.eissn=2667-2375&rft_id=info:doi/10.1016/j.crmeth.2024.100910&rft_dat=%3Cproquest_pubme%3E3140927363%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-e1570-c13bc7ed0eb0d8a3206de3b37508a66c830746d6f912361bebca115b260d340f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3140927363&rft_id=info:pmid/39626665&rfr_iscdi=true