Loading…
Enhancing immuno-oncology investigations through multidimensional decoding of tumor microenvironment with IOBR 2.0
The use of large transcriptome datasets has greatly improved our understanding of the tumor microenvironment (TME) and helped develop precise immunotherapies. The growing application of multi-omics, single-cell RNA sequencing (scRNA-seq), and spatial transcriptome sequencing has led to many new insi...
Saved in:
Published in: | Cell reports methods 2024-12, Vol.4 (12), p.100910, Article 100910 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | 12 |
container_start_page | 100910 |
container_title | Cell reports methods |
container_volume | 4 |
creator | Zeng, Dongqiang Fang, Yiran Qiu, Wenjun Luo, Peng Wang, Shixiang Shen, Rongfang Gu, Wenchao Huang, Xiatong Mao, Qianqian Wang, Gaofeng Lai, Yonghong Rong, Guangda Xu, Xi Shi, Min Wu, Zuqiang Yu, Guangchuang Liao, Wangjun |
description | The use of large transcriptome datasets has greatly improved our understanding of the tumor microenvironment (TME) and helped develop precise immunotherapies. The growing application of multi-omics, single-cell RNA sequencing (scRNA-seq), and spatial transcriptome sequencing has led to many new insights, yet these findings still require clinical validation in large cohorts. To advance multi-omics integration in TME research, we have upgraded the Immuno-Oncology Biological Research (IOBR) package to IOBR 2.0, restructuring and standardizing its analytical workflow. IOBR 2.0 offers six modules for TME analysis based on multi-omics data, including data preprocessing, TME estimation, TME infiltration pattern identification, cellular interaction analysis, genome and TME interaction, and feature visualization, as well as modeling. Additionally, IOBR 2.0 enables constructing gene signatures and reference matrices from scRNA-seq data for TME deconvolution. The user-friendly pipeline provides comprehensive insights into tumor-immune interactions, and a detailed GitBook(https://iobr.github.io/book/) offers a complete manual and analysis guide for each module.
[Display omitted]
•IOBR 2.0 offers a pipeline for TME analysis and biomarker identification•Includes six modules for RNA data preprocessing, TME profiling, genome-TME interactions•Integrates 10 deconvolution methods and 322 TME-related gene signatures•Supports phenotypic analysis in bulk RNA-seq data using single-cell features
The growing use of immunotherapy has highlighted the critical role of the TME in influencing treatment outcomes. Advances in sequencing technologies have enabled researchers to analyze the TME from multiple perspectives, leading to new insights. However, the complexity and volume of multi-omics data present challenges for analysis and interpretation. To address these, we present IOBR 2.0, an upgraded version of IOBR 1.0 that works as an integrated tool that simplifies TME analysis and visualization using multi-omics data. IOBR 2.0 enables researchers to systematically investigate TME characteristics and identify biomarkers for immunotherapy outcomes.
Zeng et al. present IOBR 2.0, a comprehensive and user-friendly toolkit for TME profiling and biomarker discovery in multi-omics studies, updated from IOBR 1.0. Featuring six integrated analysis modules, IOBR 2.0 facilitates the exploration of TME patterns, genome-TME interactions, and single-cell characteristics within bulk RNA-seq data, off |
doi_str_mv | 10.1016/j.crmeth.2024.100910 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_3140927363</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S266723752400300X</els_id><sourcerecordid>3140927363</sourcerecordid><originalsourceid>FETCH-LOGICAL-e1570-c13bc7ed0eb0d8a3206de3b37508a66c830746d6f912361bebca115b260d340f3</originalsourceid><addsrcrecordid>eNpNkUFLJDEQhYO4rOL6DxbJ0UuPlWQ6PX1ZUHFXQRBEzyGd1Exn6CRukh7x32-GccFTFVUfj3r1CPnJYMGAyavtwiSPZVxw4Ms6gp7BETnlUnYNF117_KU_Iec5bwGAt0yInn0nJ6KXdS3bU5LuwqiDcWFDnfdziE0MJk5x80Fd2GEubqOLiyHTMqY4b0bq56k46zyGXOd6ohZNtHuBuKZl9jFR70yKGHYuxVC5Qt9dGenD080z5Qv4Qb6t9ZTx_LOekdffdy-3983j05-H2-vHBlnbQWOYGEyHFnAAu9KCg7QohmoIVlpKsxLQLaWV655xIdmAg9GMtQOXYMUS1uKMXB5031L8O1cryrtscJp0wDhnJdgSet4JKSp68YnOg0er3pLzOn2o_3-qwK8DgPXgncOksnEYDFqX0BRlo1MM1D4btVWHbNQ-G3XIRvwDU6WDng</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3140927363</pqid></control><display><type>article</type><title>Enhancing immuno-oncology investigations through multidimensional decoding of tumor microenvironment with IOBR 2.0</title><source>Open Access: PubMed Central</source><source>ScienceDirect Journals</source><creator>Zeng, Dongqiang ; Fang, Yiran ; Qiu, Wenjun ; Luo, Peng ; Wang, Shixiang ; Shen, Rongfang ; Gu, Wenchao ; Huang, Xiatong ; Mao, Qianqian ; Wang, Gaofeng ; Lai, Yonghong ; Rong, Guangda ; Xu, Xi ; Shi, Min ; Wu, Zuqiang ; Yu, Guangchuang ; Liao, Wangjun</creator><creatorcontrib>Zeng, Dongqiang ; Fang, Yiran ; Qiu, Wenjun ; Luo, Peng ; Wang, Shixiang ; Shen, Rongfang ; Gu, Wenchao ; Huang, Xiatong ; Mao, Qianqian ; Wang, Gaofeng ; Lai, Yonghong ; Rong, Guangda ; Xu, Xi ; Shi, Min ; Wu, Zuqiang ; Yu, Guangchuang ; Liao, Wangjun</creatorcontrib><description>The use of large transcriptome datasets has greatly improved our understanding of the tumor microenvironment (TME) and helped develop precise immunotherapies. The growing application of multi-omics, single-cell RNA sequencing (scRNA-seq), and spatial transcriptome sequencing has led to many new insights, yet these findings still require clinical validation in large cohorts. To advance multi-omics integration in TME research, we have upgraded the Immuno-Oncology Biological Research (IOBR) package to IOBR 2.0, restructuring and standardizing its analytical workflow. IOBR 2.0 offers six modules for TME analysis based on multi-omics data, including data preprocessing, TME estimation, TME infiltration pattern identification, cellular interaction analysis, genome and TME interaction, and feature visualization, as well as modeling. Additionally, IOBR 2.0 enables constructing gene signatures and reference matrices from scRNA-seq data for TME deconvolution. The user-friendly pipeline provides comprehensive insights into tumor-immune interactions, and a detailed GitBook(https://iobr.github.io/book/) offers a complete manual and analysis guide for each module.
[Display omitted]
•IOBR 2.0 offers a pipeline for TME analysis and biomarker identification•Includes six modules for RNA data preprocessing, TME profiling, genome-TME interactions•Integrates 10 deconvolution methods and 322 TME-related gene signatures•Supports phenotypic analysis in bulk RNA-seq data using single-cell features
The growing use of immunotherapy has highlighted the critical role of the TME in influencing treatment outcomes. Advances in sequencing technologies have enabled researchers to analyze the TME from multiple perspectives, leading to new insights. However, the complexity and volume of multi-omics data present challenges for analysis and interpretation. To address these, we present IOBR 2.0, an upgraded version of IOBR 1.0 that works as an integrated tool that simplifies TME analysis and visualization using multi-omics data. IOBR 2.0 enables researchers to systematically investigate TME characteristics and identify biomarkers for immunotherapy outcomes.
Zeng et al. present IOBR 2.0, a comprehensive and user-friendly toolkit for TME profiling and biomarker discovery in multi-omics studies, updated from IOBR 1.0. Featuring six integrated analysis modules, IOBR 2.0 facilitates the exploration of TME patterns, genome-TME interactions, and single-cell characteristics within bulk RNA-seq data, offering comprehensive visualization functions and enhancing our understanding of tumor-immune interactions.</description><identifier>ISSN: 2667-2375</identifier><identifier>EISSN: 2667-2375</identifier><identifier>DOI: 10.1016/j.crmeth.2024.100910</identifier><identifier>PMID: 39626665</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Computational Biology - methods ; Gene Expression Profiling - methods ; gene signatures ; Humans ; immunotherapy ; Immunotherapy - methods ; multi-omics ; Neoplasms - genetics ; Neoplasms - immunology ; Neoplasms - pathology ; Sequence Analysis, RNA ; Single-Cell Analysis - methods ; single-cell data ; Software ; Transcriptome ; tumor microenvironment ; Tumor Microenvironment - immunology ; tumor-immune interaction ; tumor-metabolism</subject><ispartof>Cell reports methods, 2024-12, Vol.4 (12), p.100910, Article 100910</ispartof><rights>2024 The Author(s)</rights><rights>Copyright © 2024 The Author(s). Published by Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-1364-8442 ; 0000-0002-6485-8781</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S266723752400300X$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3549,27924,27925,45780</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39626665$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zeng, Dongqiang</creatorcontrib><creatorcontrib>Fang, Yiran</creatorcontrib><creatorcontrib>Qiu, Wenjun</creatorcontrib><creatorcontrib>Luo, Peng</creatorcontrib><creatorcontrib>Wang, Shixiang</creatorcontrib><creatorcontrib>Shen, Rongfang</creatorcontrib><creatorcontrib>Gu, Wenchao</creatorcontrib><creatorcontrib>Huang, Xiatong</creatorcontrib><creatorcontrib>Mao, Qianqian</creatorcontrib><creatorcontrib>Wang, Gaofeng</creatorcontrib><creatorcontrib>Lai, Yonghong</creatorcontrib><creatorcontrib>Rong, Guangda</creatorcontrib><creatorcontrib>Xu, Xi</creatorcontrib><creatorcontrib>Shi, Min</creatorcontrib><creatorcontrib>Wu, Zuqiang</creatorcontrib><creatorcontrib>Yu, Guangchuang</creatorcontrib><creatorcontrib>Liao, Wangjun</creatorcontrib><title>Enhancing immuno-oncology investigations through multidimensional decoding of tumor microenvironment with IOBR 2.0</title><title>Cell reports methods</title><addtitle>Cell Rep Methods</addtitle><description>The use of large transcriptome datasets has greatly improved our understanding of the tumor microenvironment (TME) and helped develop precise immunotherapies. The growing application of multi-omics, single-cell RNA sequencing (scRNA-seq), and spatial transcriptome sequencing has led to many new insights, yet these findings still require clinical validation in large cohorts. To advance multi-omics integration in TME research, we have upgraded the Immuno-Oncology Biological Research (IOBR) package to IOBR 2.0, restructuring and standardizing its analytical workflow. IOBR 2.0 offers six modules for TME analysis based on multi-omics data, including data preprocessing, TME estimation, TME infiltration pattern identification, cellular interaction analysis, genome and TME interaction, and feature visualization, as well as modeling. Additionally, IOBR 2.0 enables constructing gene signatures and reference matrices from scRNA-seq data for TME deconvolution. The user-friendly pipeline provides comprehensive insights into tumor-immune interactions, and a detailed GitBook(https://iobr.github.io/book/) offers a complete manual and analysis guide for each module.
[Display omitted]
•IOBR 2.0 offers a pipeline for TME analysis and biomarker identification•Includes six modules for RNA data preprocessing, TME profiling, genome-TME interactions•Integrates 10 deconvolution methods and 322 TME-related gene signatures•Supports phenotypic analysis in bulk RNA-seq data using single-cell features
The growing use of immunotherapy has highlighted the critical role of the TME in influencing treatment outcomes. Advances in sequencing technologies have enabled researchers to analyze the TME from multiple perspectives, leading to new insights. However, the complexity and volume of multi-omics data present challenges for analysis and interpretation. To address these, we present IOBR 2.0, an upgraded version of IOBR 1.0 that works as an integrated tool that simplifies TME analysis and visualization using multi-omics data. IOBR 2.0 enables researchers to systematically investigate TME characteristics and identify biomarkers for immunotherapy outcomes.
Zeng et al. present IOBR 2.0, a comprehensive and user-friendly toolkit for TME profiling and biomarker discovery in multi-omics studies, updated from IOBR 1.0. Featuring six integrated analysis modules, IOBR 2.0 facilitates the exploration of TME patterns, genome-TME interactions, and single-cell characteristics within bulk RNA-seq data, offering comprehensive visualization functions and enhancing our understanding of tumor-immune interactions.</description><subject>Computational Biology - methods</subject><subject>Gene Expression Profiling - methods</subject><subject>gene signatures</subject><subject>Humans</subject><subject>immunotherapy</subject><subject>Immunotherapy - methods</subject><subject>multi-omics</subject><subject>Neoplasms - genetics</subject><subject>Neoplasms - immunology</subject><subject>Neoplasms - pathology</subject><subject>Sequence Analysis, RNA</subject><subject>Single-Cell Analysis - methods</subject><subject>single-cell data</subject><subject>Software</subject><subject>Transcriptome</subject><subject>tumor microenvironment</subject><subject>Tumor Microenvironment - immunology</subject><subject>tumor-immune interaction</subject><subject>tumor-metabolism</subject><issn>2667-2375</issn><issn>2667-2375</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkUFLJDEQhYO4rOL6DxbJ0UuPlWQ6PX1ZUHFXQRBEzyGd1Exn6CRukh7x32-GccFTFVUfj3r1CPnJYMGAyavtwiSPZVxw4Ms6gp7BETnlUnYNF117_KU_Iec5bwGAt0yInn0nJ6KXdS3bU5LuwqiDcWFDnfdziE0MJk5x80Fd2GEubqOLiyHTMqY4b0bq56k46zyGXOd6ohZNtHuBuKZl9jFR70yKGHYuxVC5Qt9dGenD080z5Qv4Qb6t9ZTx_LOekdffdy-3983j05-H2-vHBlnbQWOYGEyHFnAAu9KCg7QohmoIVlpKsxLQLaWV655xIdmAg9GMtQOXYMUS1uKMXB5031L8O1cryrtscJp0wDhnJdgSet4JKSp68YnOg0er3pLzOn2o_3-qwK8DgPXgncOksnEYDFqX0BRlo1MM1D4btVWHbNQ-G3XIRvwDU6WDng</recordid><startdate>20241216</startdate><enddate>20241216</enddate><creator>Zeng, Dongqiang</creator><creator>Fang, Yiran</creator><creator>Qiu, Wenjun</creator><creator>Luo, Peng</creator><creator>Wang, Shixiang</creator><creator>Shen, Rongfang</creator><creator>Gu, Wenchao</creator><creator>Huang, Xiatong</creator><creator>Mao, Qianqian</creator><creator>Wang, Gaofeng</creator><creator>Lai, Yonghong</creator><creator>Rong, Guangda</creator><creator>Xu, Xi</creator><creator>Shi, Min</creator><creator>Wu, Zuqiang</creator><creator>Yu, Guangchuang</creator><creator>Liao, Wangjun</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1364-8442</orcidid><orcidid>https://orcid.org/0000-0002-6485-8781</orcidid></search><sort><creationdate>20241216</creationdate><title>Enhancing immuno-oncology investigations through multidimensional decoding of tumor microenvironment with IOBR 2.0</title><author>Zeng, Dongqiang ; Fang, Yiran ; Qiu, Wenjun ; Luo, Peng ; Wang, Shixiang ; Shen, Rongfang ; Gu, Wenchao ; Huang, Xiatong ; Mao, Qianqian ; Wang, Gaofeng ; Lai, Yonghong ; Rong, Guangda ; Xu, Xi ; Shi, Min ; Wu, Zuqiang ; Yu, Guangchuang ; Liao, Wangjun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-e1570-c13bc7ed0eb0d8a3206de3b37508a66c830746d6f912361bebca115b260d340f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Computational Biology - methods</topic><topic>Gene Expression Profiling - methods</topic><topic>gene signatures</topic><topic>Humans</topic><topic>immunotherapy</topic><topic>Immunotherapy - methods</topic><topic>multi-omics</topic><topic>Neoplasms - genetics</topic><topic>Neoplasms - immunology</topic><topic>Neoplasms - pathology</topic><topic>Sequence Analysis, RNA</topic><topic>Single-Cell Analysis - methods</topic><topic>single-cell data</topic><topic>Software</topic><topic>Transcriptome</topic><topic>tumor microenvironment</topic><topic>Tumor Microenvironment - immunology</topic><topic>tumor-immune interaction</topic><topic>tumor-metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zeng, Dongqiang</creatorcontrib><creatorcontrib>Fang, Yiran</creatorcontrib><creatorcontrib>Qiu, Wenjun</creatorcontrib><creatorcontrib>Luo, Peng</creatorcontrib><creatorcontrib>Wang, Shixiang</creatorcontrib><creatorcontrib>Shen, Rongfang</creatorcontrib><creatorcontrib>Gu, Wenchao</creatorcontrib><creatorcontrib>Huang, Xiatong</creatorcontrib><creatorcontrib>Mao, Qianqian</creatorcontrib><creatorcontrib>Wang, Gaofeng</creatorcontrib><creatorcontrib>Lai, Yonghong</creatorcontrib><creatorcontrib>Rong, Guangda</creatorcontrib><creatorcontrib>Xu, Xi</creatorcontrib><creatorcontrib>Shi, Min</creatorcontrib><creatorcontrib>Wu, Zuqiang</creatorcontrib><creatorcontrib>Yu, Guangchuang</creatorcontrib><creatorcontrib>Liao, Wangjun</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>Cell reports methods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zeng, Dongqiang</au><au>Fang, Yiran</au><au>Qiu, Wenjun</au><au>Luo, Peng</au><au>Wang, Shixiang</au><au>Shen, Rongfang</au><au>Gu, Wenchao</au><au>Huang, Xiatong</au><au>Mao, Qianqian</au><au>Wang, Gaofeng</au><au>Lai, Yonghong</au><au>Rong, Guangda</au><au>Xu, Xi</au><au>Shi, Min</au><au>Wu, Zuqiang</au><au>Yu, Guangchuang</au><au>Liao, Wangjun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhancing immuno-oncology investigations through multidimensional decoding of tumor microenvironment with IOBR 2.0</atitle><jtitle>Cell reports methods</jtitle><addtitle>Cell Rep Methods</addtitle><date>2024-12-16</date><risdate>2024</risdate><volume>4</volume><issue>12</issue><spage>100910</spage><pages>100910-</pages><artnum>100910</artnum><issn>2667-2375</issn><eissn>2667-2375</eissn><abstract>The use of large transcriptome datasets has greatly improved our understanding of the tumor microenvironment (TME) and helped develop precise immunotherapies. The growing application of multi-omics, single-cell RNA sequencing (scRNA-seq), and spatial transcriptome sequencing has led to many new insights, yet these findings still require clinical validation in large cohorts. To advance multi-omics integration in TME research, we have upgraded the Immuno-Oncology Biological Research (IOBR) package to IOBR 2.0, restructuring and standardizing its analytical workflow. IOBR 2.0 offers six modules for TME analysis based on multi-omics data, including data preprocessing, TME estimation, TME infiltration pattern identification, cellular interaction analysis, genome and TME interaction, and feature visualization, as well as modeling. Additionally, IOBR 2.0 enables constructing gene signatures and reference matrices from scRNA-seq data for TME deconvolution. The user-friendly pipeline provides comprehensive insights into tumor-immune interactions, and a detailed GitBook(https://iobr.github.io/book/) offers a complete manual and analysis guide for each module.
[Display omitted]
•IOBR 2.0 offers a pipeline for TME analysis and biomarker identification•Includes six modules for RNA data preprocessing, TME profiling, genome-TME interactions•Integrates 10 deconvolution methods and 322 TME-related gene signatures•Supports phenotypic analysis in bulk RNA-seq data using single-cell features
The growing use of immunotherapy has highlighted the critical role of the TME in influencing treatment outcomes. Advances in sequencing technologies have enabled researchers to analyze the TME from multiple perspectives, leading to new insights. However, the complexity and volume of multi-omics data present challenges for analysis and interpretation. To address these, we present IOBR 2.0, an upgraded version of IOBR 1.0 that works as an integrated tool that simplifies TME analysis and visualization using multi-omics data. IOBR 2.0 enables researchers to systematically investigate TME characteristics and identify biomarkers for immunotherapy outcomes.
Zeng et al. present IOBR 2.0, a comprehensive and user-friendly toolkit for TME profiling and biomarker discovery in multi-omics studies, updated from IOBR 1.0. Featuring six integrated analysis modules, IOBR 2.0 facilitates the exploration of TME patterns, genome-TME interactions, and single-cell characteristics within bulk RNA-seq data, offering comprehensive visualization functions and enhancing our understanding of tumor-immune interactions.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>39626665</pmid><doi>10.1016/j.crmeth.2024.100910</doi><orcidid>https://orcid.org/0000-0002-1364-8442</orcidid><orcidid>https://orcid.org/0000-0002-6485-8781</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2667-2375 |
ispartof | Cell reports methods, 2024-12, Vol.4 (12), p.100910, Article 100910 |
issn | 2667-2375 2667-2375 |
language | eng |
recordid | cdi_proquest_miscellaneous_3140927363 |
source | Open Access: PubMed Central; ScienceDirect Journals |
subjects | Computational Biology - methods Gene Expression Profiling - methods gene signatures Humans immunotherapy Immunotherapy - methods multi-omics Neoplasms - genetics Neoplasms - immunology Neoplasms - pathology Sequence Analysis, RNA Single-Cell Analysis - methods single-cell data Software Transcriptome tumor microenvironment Tumor Microenvironment - immunology tumor-immune interaction tumor-metabolism |
title | Enhancing immuno-oncology investigations through multidimensional decoding of tumor microenvironment with IOBR 2.0 |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T00%3A19%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhancing%20immuno-oncology%20investigations%20through%20multidimensional%20decoding%20of%20tumor%20microenvironment%20with%20IOBR%202.0&rft.jtitle=Cell%20reports%20methods&rft.au=Zeng,%20Dongqiang&rft.date=2024-12-16&rft.volume=4&rft.issue=12&rft.spage=100910&rft.pages=100910-&rft.artnum=100910&rft.issn=2667-2375&rft.eissn=2667-2375&rft_id=info:doi/10.1016/j.crmeth.2024.100910&rft_dat=%3Cproquest_pubme%3E3140927363%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-e1570-c13bc7ed0eb0d8a3206de3b37508a66c830746d6f912361bebca115b260d340f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3140927363&rft_id=info:pmid/39626665&rfr_iscdi=true |