Loading…

Chenodeoxycholic acid alleviated the cyclosporine-induced nephrotoxicity by decreasing oxidative stress and suppressing renin-angiotensin system through AT2R and ACE2 mRNA upregulation in rats

Oxidative stress, inflammation and renin-angiotensin system (RAS) activation play an important role in the nephrotoxicity which is caused by the long-term use of the immunosuppressive drug cyclosporine (CsA). This study investigates whether chenodeoxycholic acid (CDCA), an endogenous farnesoid X rec...

Full description

Saved in:
Bibliographic Details
Published in:Journal of molecular histology 2025-02, Vol.56 (1), p.23, Article 23
Main Authors: Bingül, İlknur, Kalayci, Rivaze, Tekkeşin, Merva Soluk, Olgac, Vakur, Bekpinar, Seldag, Uysal, Mujdat
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Oxidative stress, inflammation and renin-angiotensin system (RAS) activation play an important role in the nephrotoxicity which is caused by the long-term use of the immunosuppressive drug cyclosporine (CsA). This study investigates whether chenodeoxycholic acid (CDCA), an endogenous farnesoid X receptor (FXR) agonist with antioxidant and anti-inflammatory effects, modulates CsA nephrotoxicity. CsA (25 mg/kg/day; s.c.) was administered to rats for 12 days. CDCA (20 mg/kg/day; i.p.) injection was started 3 days before CsA and continued for 15 days. CDCA improved renal damage and function in CsA-administered rats. Renal function markers in serum, renal histology, oxidative stress, inflammation and RAS components were determined in kidney. CDCA reduced CsA-induced renal increases in NADPH oxidase 4 and NADPH oxidase 2 mRNA expressions, oxidative stress and inflammation. CDCA elevated renal FXR, small heterodimer partner-1, hypoxia-inducible factor and vascular endothelial growth factor and nuclear factor erythroid 2-related factor mRNA expressions in CsA rats. It prevents renin angiotensin system activation by reducing angiotensin II (Ang-II) levels in serum and upregulating renal mRNA expressions of Ang II type-II receptor (AT2R) and angiotensin converting enzyme 2 (ACE2), but not AT1R and ACE in CsA rats. Our results indicate that CDCA may be a protective agent against CsA-nephrotoxicity by decreasing inflammation, oxidative stress and RAS activation via AT2R and ACE2 upregulations.
ISSN:1567-2379
1567-2387
1567-2387
DOI:10.1007/s10735-024-10308-z