Loading…

On-chip fabrication of tailored 3D hydrogel scaffolds to model cancer cell invasion and interaction with endothelial cells

The high mortality associated with certain cancers can be attributed to the invasive nature of the tumor cells. Yet, the complexity of studying invasion hinders our understanding of how the tumor spreads. This work presents a microengineered three-dimensional (3D) in vitro model for studying cancer...

Full description

Saved in:
Bibliographic Details
Published in:APL bioengineering 2024-12, Vol.8 (4), p.046113-046113-13
Main Authors: Cantoni, Federico, Barbe, Laurent, Roy, Ananya, Wicher, Grzegorz, Simonsson, Stina, Forsberg-Nilsson, Karin, Tenje, Maria
Format: Article
Language:English
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c404t-149abef76fecf13d52632f2335f3c0e718eab9612633f92f418d297c6f199b723
container_end_page 046113-13
container_issue 4
container_start_page 046113
container_title APL bioengineering
container_volume 8
creator Cantoni, Federico
Barbe, Laurent
Roy, Ananya
Wicher, Grzegorz
Simonsson, Stina
Forsberg-Nilsson, Karin
Tenje, Maria
description The high mortality associated with certain cancers can be attributed to the invasive nature of the tumor cells. Yet, the complexity of studying invasion hinders our understanding of how the tumor spreads. This work presents a microengineered three-dimensional (3D) in vitro model for studying cancer cell invasion and interaction with endothelial cells. The model was generated by printing a biomimetic hydrogel scaffold directly on a chip using 2-photon polymerization that simulates the brain's extracellular matrix. The scaffold's geometry was specifically designed to facilitate the growth of a continuous layer of endothelial cells on one side, while also allowing for the introduction of tumor cells on the other side. This arrangement confines the cells spatially and enables in situ microscopy of the cancer cells as they invade the hydrogel scaffold and interact with the endothelial layer. We examined the impact of 3D printing parameters on the hydrogel's physical properties and used patient derived glioblastoma cells to study their effect on cell invasion. Notably, the tumor cells tended to infiltrate faster when an endothelial cell barrier was present. The potential for adjusting the hydrogel scaffold's properties, coupled with the capability for real-time observation of tumor-endothelial cell interactions, offers a platform for studying tumor invasion and tumor–endothelial cell interactions.
doi_str_mv 10.1063/5.0227135
format article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_miscellaneous_3146520624</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_c8c9c13eaf25487d9023c1555d662200</doaj_id><sourcerecordid>3146520624</sourcerecordid><originalsourceid>FETCH-LOGICAL-c404t-149abef76fecf13d52632f2335f3c0e718eab9612633f92f418d297c6f199b723</originalsourceid><addsrcrecordid>eNp9kktv1DAURiMEolXpgj-AvISKFL8dr1DV8qhUqRtgazl-TFx54sF2WpVfTyYzVJ0NK9vX5x4_9DXNWwTPEeTkEzuHGAtE2IvmGFNBWtwJ8fLZ_Kg5LeUOQogRkRLD180RkZxQLsRx8-d2bM0QNsDrPgeja0gjSB5UHWLKzgJyBYZHm9PKRVCM9j5FW0BNYJ3sXDJ6NC4D42IEYbzXZduvRzsvqsvaLL6HUAfgRpvq4GLQccHLm-aV17G40_140vz8-uXH5ff25vbb9eXFTWsopLVFVOreecG9Mx4RyzAn2GNCmCcGOoE6p3vJ0VwmXmJPUWexFIZ7JGUvMDlprndem_Sd2uSw1vlRJR3UUkh5pXSuwUSnTGekQcRpjxnthJUQE4MYY5ZzjCGcXR93rvLgNlN_YLsKvy4W2zQpRhmRW_zzDp_ZtbPGjTXreNB1uDOGQa3SvUKIIwGxnA3v94acfk-uVLUOZft9enRpKoogyhmGHNMZ_bBDTU6lZOefzkFQbaOimNpHZWbfPb_YE_kvGDNwtn-oCXVJxX9sfwGF1Mbk</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3146520624</pqid></control><display><type>article</type><title>On-chip fabrication of tailored 3D hydrogel scaffolds to model cancer cell invasion and interaction with endothelial cells</title><source>AIP Open Access Journals</source><source>PubMed Central</source><creator>Cantoni, Federico ; Barbe, Laurent ; Roy, Ananya ; Wicher, Grzegorz ; Simonsson, Stina ; Forsberg-Nilsson, Karin ; Tenje, Maria</creator><creatorcontrib>Cantoni, Federico ; Barbe, Laurent ; Roy, Ananya ; Wicher, Grzegorz ; Simonsson, Stina ; Forsberg-Nilsson, Karin ; Tenje, Maria</creatorcontrib><description>The high mortality associated with certain cancers can be attributed to the invasive nature of the tumor cells. Yet, the complexity of studying invasion hinders our understanding of how the tumor spreads. This work presents a microengineered three-dimensional (3D) in vitro model for studying cancer cell invasion and interaction with endothelial cells. The model was generated by printing a biomimetic hydrogel scaffold directly on a chip using 2-photon polymerization that simulates the brain's extracellular matrix. The scaffold's geometry was specifically designed to facilitate the growth of a continuous layer of endothelial cells on one side, while also allowing for the introduction of tumor cells on the other side. This arrangement confines the cells spatially and enables in situ microscopy of the cancer cells as they invade the hydrogel scaffold and interact with the endothelial layer. We examined the impact of 3D printing parameters on the hydrogel's physical properties and used patient derived glioblastoma cells to study their effect on cell invasion. Notably, the tumor cells tended to infiltrate faster when an endothelial cell barrier was present. The potential for adjusting the hydrogel scaffold's properties, coupled with the capability for real-time observation of tumor-endothelial cell interactions, offers a platform for studying tumor invasion and tumor–endothelial cell interactions.</description><identifier>ISSN: 2473-2877</identifier><identifier>EISSN: 2473-2877</identifier><identifier>DOI: 10.1063/5.0227135</identifier><identifier>PMID: 39634677</identifier><identifier>CODEN: ABPID9</identifier><language>eng</language><publisher>United States: AIP Publishing LLC</publisher><ispartof>APL bioengineering, 2024-12, Vol.8 (4), p.046113-046113-13</ispartof><rights>Author(s)</rights><rights>2024 Author(s).</rights><rights>2024 Author(s). 2024 Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c404t-149abef76fecf13d52632f2335f3c0e718eab9612633f92f418d297c6f199b723</cites><orcidid>0000-0002-7737-1374 ; 0000-0003-0692-6245 ; 0000-0002-1264-1337 ; 0000-0002-3207-6339 ; 0000-0002-3840-0312 ; 0000-0001-9020-3714 ; 0000-0003-4475-6478</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11617029/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://pubs.aip.org/apb/article-lookup/doi/10.1063/5.0227135$$EHTML$$P50$$Gscitation$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27888,27922,27923,53789,53791,76178</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39634677$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-545390$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Cantoni, Federico</creatorcontrib><creatorcontrib>Barbe, Laurent</creatorcontrib><creatorcontrib>Roy, Ananya</creatorcontrib><creatorcontrib>Wicher, Grzegorz</creatorcontrib><creatorcontrib>Simonsson, Stina</creatorcontrib><creatorcontrib>Forsberg-Nilsson, Karin</creatorcontrib><creatorcontrib>Tenje, Maria</creatorcontrib><title>On-chip fabrication of tailored 3D hydrogel scaffolds to model cancer cell invasion and interaction with endothelial cells</title><title>APL bioengineering</title><addtitle>APL Bioeng</addtitle><description>The high mortality associated with certain cancers can be attributed to the invasive nature of the tumor cells. Yet, the complexity of studying invasion hinders our understanding of how the tumor spreads. This work presents a microengineered three-dimensional (3D) in vitro model for studying cancer cell invasion and interaction with endothelial cells. The model was generated by printing a biomimetic hydrogel scaffold directly on a chip using 2-photon polymerization that simulates the brain's extracellular matrix. The scaffold's geometry was specifically designed to facilitate the growth of a continuous layer of endothelial cells on one side, while also allowing for the introduction of tumor cells on the other side. This arrangement confines the cells spatially and enables in situ microscopy of the cancer cells as they invade the hydrogel scaffold and interact with the endothelial layer. We examined the impact of 3D printing parameters on the hydrogel's physical properties and used patient derived glioblastoma cells to study their effect on cell invasion. Notably, the tumor cells tended to infiltrate faster when an endothelial cell barrier was present. The potential for adjusting the hydrogel scaffold's properties, coupled with the capability for real-time observation of tumor-endothelial cell interactions, offers a platform for studying tumor invasion and tumor–endothelial cell interactions.</description><issn>2473-2877</issn><issn>2473-2877</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>AJDQP</sourceid><sourceid>DOA</sourceid><recordid>eNp9kktv1DAURiMEolXpgj-AvISKFL8dr1DV8qhUqRtgazl-TFx54sF2WpVfTyYzVJ0NK9vX5x4_9DXNWwTPEeTkEzuHGAtE2IvmGFNBWtwJ8fLZ_Kg5LeUOQogRkRLD180RkZxQLsRx8-d2bM0QNsDrPgeja0gjSB5UHWLKzgJyBYZHm9PKRVCM9j5FW0BNYJ3sXDJ6NC4D42IEYbzXZduvRzsvqsvaLL6HUAfgRpvq4GLQccHLm-aV17G40_140vz8-uXH5ff25vbb9eXFTWsopLVFVOreecG9Mx4RyzAn2GNCmCcGOoE6p3vJ0VwmXmJPUWexFIZ7JGUvMDlprndem_Sd2uSw1vlRJR3UUkh5pXSuwUSnTGekQcRpjxnthJUQE4MYY5ZzjCGcXR93rvLgNlN_YLsKvy4W2zQpRhmRW_zzDp_ZtbPGjTXreNB1uDOGQa3SvUKIIwGxnA3v94acfk-uVLUOZft9enRpKoogyhmGHNMZ_bBDTU6lZOefzkFQbaOimNpHZWbfPb_YE_kvGDNwtn-oCXVJxX9sfwGF1Mbk</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Cantoni, Federico</creator><creator>Barbe, Laurent</creator><creator>Roy, Ananya</creator><creator>Wicher, Grzegorz</creator><creator>Simonsson, Stina</creator><creator>Forsberg-Nilsson, Karin</creator><creator>Tenje, Maria</creator><general>AIP Publishing LLC</general><scope>AJDQP</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>ACNBI</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>DF2</scope><scope>ZZAVC</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7737-1374</orcidid><orcidid>https://orcid.org/0000-0003-0692-6245</orcidid><orcidid>https://orcid.org/0000-0002-1264-1337</orcidid><orcidid>https://orcid.org/0000-0002-3207-6339</orcidid><orcidid>https://orcid.org/0000-0002-3840-0312</orcidid><orcidid>https://orcid.org/0000-0001-9020-3714</orcidid><orcidid>https://orcid.org/0000-0003-4475-6478</orcidid></search><sort><creationdate>20241201</creationdate><title>On-chip fabrication of tailored 3D hydrogel scaffolds to model cancer cell invasion and interaction with endothelial cells</title><author>Cantoni, Federico ; Barbe, Laurent ; Roy, Ananya ; Wicher, Grzegorz ; Simonsson, Stina ; Forsberg-Nilsson, Karin ; Tenje, Maria</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c404t-149abef76fecf13d52632f2335f3c0e718eab9612633f92f418d297c6f199b723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cantoni, Federico</creatorcontrib><creatorcontrib>Barbe, Laurent</creatorcontrib><creatorcontrib>Roy, Ananya</creatorcontrib><creatorcontrib>Wicher, Grzegorz</creatorcontrib><creatorcontrib>Simonsson, Stina</creatorcontrib><creatorcontrib>Forsberg-Nilsson, Karin</creatorcontrib><creatorcontrib>Tenje, Maria</creatorcontrib><collection>AIP Open Access Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SWEPUB Uppsala universitet full text</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SWEPUB Uppsala universitet</collection><collection>SwePub Articles full text</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>APL bioengineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cantoni, Federico</au><au>Barbe, Laurent</au><au>Roy, Ananya</au><au>Wicher, Grzegorz</au><au>Simonsson, Stina</au><au>Forsberg-Nilsson, Karin</au><au>Tenje, Maria</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On-chip fabrication of tailored 3D hydrogel scaffolds to model cancer cell invasion and interaction with endothelial cells</atitle><jtitle>APL bioengineering</jtitle><addtitle>APL Bioeng</addtitle><date>2024-12-01</date><risdate>2024</risdate><volume>8</volume><issue>4</issue><spage>046113</spage><epage>046113-13</epage><pages>046113-046113-13</pages><issn>2473-2877</issn><eissn>2473-2877</eissn><coden>ABPID9</coden><abstract>The high mortality associated with certain cancers can be attributed to the invasive nature of the tumor cells. Yet, the complexity of studying invasion hinders our understanding of how the tumor spreads. This work presents a microengineered three-dimensional (3D) in vitro model for studying cancer cell invasion and interaction with endothelial cells. The model was generated by printing a biomimetic hydrogel scaffold directly on a chip using 2-photon polymerization that simulates the brain's extracellular matrix. The scaffold's geometry was specifically designed to facilitate the growth of a continuous layer of endothelial cells on one side, while also allowing for the introduction of tumor cells on the other side. This arrangement confines the cells spatially and enables in situ microscopy of the cancer cells as they invade the hydrogel scaffold and interact with the endothelial layer. We examined the impact of 3D printing parameters on the hydrogel's physical properties and used patient derived glioblastoma cells to study their effect on cell invasion. Notably, the tumor cells tended to infiltrate faster when an endothelial cell barrier was present. The potential for adjusting the hydrogel scaffold's properties, coupled with the capability for real-time observation of tumor-endothelial cell interactions, offers a platform for studying tumor invasion and tumor–endothelial cell interactions.</abstract><cop>United States</cop><pub>AIP Publishing LLC</pub><pmid>39634677</pmid><doi>10.1063/5.0227135</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-7737-1374</orcidid><orcidid>https://orcid.org/0000-0003-0692-6245</orcidid><orcidid>https://orcid.org/0000-0002-1264-1337</orcidid><orcidid>https://orcid.org/0000-0002-3207-6339</orcidid><orcidid>https://orcid.org/0000-0002-3840-0312</orcidid><orcidid>https://orcid.org/0000-0001-9020-3714</orcidid><orcidid>https://orcid.org/0000-0003-4475-6478</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2473-2877
ispartof APL bioengineering, 2024-12, Vol.8 (4), p.046113-046113-13
issn 2473-2877
2473-2877
language eng
recordid cdi_proquest_miscellaneous_3146520624
source AIP Open Access Journals; PubMed Central
title On-chip fabrication of tailored 3D hydrogel scaffolds to model cancer cell invasion and interaction with endothelial cells
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T10%3A18%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On-chip%20fabrication%20of%20tailored%203D%20hydrogel%20scaffolds%20to%20model%20cancer%20cell%20invasion%20and%20interaction%20with%20endothelial%20cells&rft.jtitle=APL%20bioengineering&rft.au=Cantoni,%20Federico&rft.date=2024-12-01&rft.volume=8&rft.issue=4&rft.spage=046113&rft.epage=046113-13&rft.pages=046113-046113-13&rft.issn=2473-2877&rft.eissn=2473-2877&rft.coden=ABPID9&rft_id=info:doi/10.1063/5.0227135&rft_dat=%3Cproquest_scita%3E3146520624%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c404t-149abef76fecf13d52632f2335f3c0e718eab9612633f92f418d297c6f199b723%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3146520624&rft_id=info:pmid/39634677&rfr_iscdi=true