Loading…
On-chip fabrication of tailored 3D hydrogel scaffolds to model cancer cell invasion and interaction with endothelial cells
The high mortality associated with certain cancers can be attributed to the invasive nature of the tumor cells. Yet, the complexity of studying invasion hinders our understanding of how the tumor spreads. This work presents a microengineered three-dimensional (3D) in vitro model for studying cancer...
Saved in:
Published in: | APL bioengineering 2024-12, Vol.8 (4), p.046113-046113-13 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c404t-149abef76fecf13d52632f2335f3c0e718eab9612633f92f418d297c6f199b723 |
container_end_page | 046113-13 |
container_issue | 4 |
container_start_page | 046113 |
container_title | APL bioengineering |
container_volume | 8 |
creator | Cantoni, Federico Barbe, Laurent Roy, Ananya Wicher, Grzegorz Simonsson, Stina Forsberg-Nilsson, Karin Tenje, Maria |
description | The high mortality associated with certain cancers can be attributed to the invasive nature of the tumor cells. Yet, the complexity of studying invasion hinders our understanding of how the tumor spreads. This work presents a microengineered three-dimensional (3D) in vitro model for studying cancer cell invasion and interaction with endothelial cells. The model was generated by printing a biomimetic hydrogel scaffold directly on a chip using 2-photon polymerization that simulates the brain's extracellular matrix. The scaffold's geometry was specifically designed to facilitate the growth of a continuous layer of endothelial cells on one side, while also allowing for the introduction of tumor cells on the other side. This arrangement confines the cells spatially and enables in situ microscopy of the cancer cells as they invade the hydrogel scaffold and interact with the endothelial layer. We examined the impact of 3D printing parameters on the hydrogel's physical properties and used patient derived glioblastoma cells to study their effect on cell invasion. Notably, the tumor cells tended to infiltrate faster when an endothelial cell barrier was present. The potential for adjusting the hydrogel scaffold's properties, coupled with the capability for real-time observation of tumor-endothelial cell interactions, offers a platform for studying tumor invasion and tumor–endothelial cell interactions. |
doi_str_mv | 10.1063/5.0227135 |
format | article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_miscellaneous_3146520624</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_c8c9c13eaf25487d9023c1555d662200</doaj_id><sourcerecordid>3146520624</sourcerecordid><originalsourceid>FETCH-LOGICAL-c404t-149abef76fecf13d52632f2335f3c0e718eab9612633f92f418d297c6f199b723</originalsourceid><addsrcrecordid>eNp9kktv1DAURiMEolXpgj-AvISKFL8dr1DV8qhUqRtgazl-TFx54sF2WpVfTyYzVJ0NK9vX5x4_9DXNWwTPEeTkEzuHGAtE2IvmGFNBWtwJ8fLZ_Kg5LeUOQogRkRLD180RkZxQLsRx8-d2bM0QNsDrPgeja0gjSB5UHWLKzgJyBYZHm9PKRVCM9j5FW0BNYJ3sXDJ6NC4D42IEYbzXZduvRzsvqsvaLL6HUAfgRpvq4GLQccHLm-aV17G40_140vz8-uXH5ff25vbb9eXFTWsopLVFVOreecG9Mx4RyzAn2GNCmCcGOoE6p3vJ0VwmXmJPUWexFIZ7JGUvMDlprndem_Sd2uSw1vlRJR3UUkh5pXSuwUSnTGekQcRpjxnthJUQE4MYY5ZzjCGcXR93rvLgNlN_YLsKvy4W2zQpRhmRW_zzDp_ZtbPGjTXreNB1uDOGQa3SvUKIIwGxnA3v94acfk-uVLUOZft9enRpKoogyhmGHNMZ_bBDTU6lZOefzkFQbaOimNpHZWbfPb_YE_kvGDNwtn-oCXVJxX9sfwGF1Mbk</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3146520624</pqid></control><display><type>article</type><title>On-chip fabrication of tailored 3D hydrogel scaffolds to model cancer cell invasion and interaction with endothelial cells</title><source>AIP Open Access Journals</source><source>PubMed Central</source><creator>Cantoni, Federico ; Barbe, Laurent ; Roy, Ananya ; Wicher, Grzegorz ; Simonsson, Stina ; Forsberg-Nilsson, Karin ; Tenje, Maria</creator><creatorcontrib>Cantoni, Federico ; Barbe, Laurent ; Roy, Ananya ; Wicher, Grzegorz ; Simonsson, Stina ; Forsberg-Nilsson, Karin ; Tenje, Maria</creatorcontrib><description>The high mortality associated with certain cancers can be attributed to the invasive nature of the tumor cells. Yet, the complexity of studying invasion hinders our understanding of how the tumor spreads. This work presents a microengineered three-dimensional (3D) in vitro model for studying cancer cell invasion and interaction with endothelial cells. The model was generated by printing a biomimetic hydrogel scaffold directly on a chip using 2-photon polymerization that simulates the brain's extracellular matrix. The scaffold's geometry was specifically designed to facilitate the growth of a continuous layer of endothelial cells on one side, while also allowing for the introduction of tumor cells on the other side. This arrangement confines the cells spatially and enables in situ microscopy of the cancer cells as they invade the hydrogel scaffold and interact with the endothelial layer. We examined the impact of 3D printing parameters on the hydrogel's physical properties and used patient derived glioblastoma cells to study their effect on cell invasion. Notably, the tumor cells tended to infiltrate faster when an endothelial cell barrier was present. The potential for adjusting the hydrogel scaffold's properties, coupled with the capability for real-time observation of tumor-endothelial cell interactions, offers a platform for studying tumor invasion and tumor–endothelial cell interactions.</description><identifier>ISSN: 2473-2877</identifier><identifier>EISSN: 2473-2877</identifier><identifier>DOI: 10.1063/5.0227135</identifier><identifier>PMID: 39634677</identifier><identifier>CODEN: ABPID9</identifier><language>eng</language><publisher>United States: AIP Publishing LLC</publisher><ispartof>APL bioengineering, 2024-12, Vol.8 (4), p.046113-046113-13</ispartof><rights>Author(s)</rights><rights>2024 Author(s).</rights><rights>2024 Author(s). 2024 Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c404t-149abef76fecf13d52632f2335f3c0e718eab9612633f92f418d297c6f199b723</cites><orcidid>0000-0002-7737-1374 ; 0000-0003-0692-6245 ; 0000-0002-1264-1337 ; 0000-0002-3207-6339 ; 0000-0002-3840-0312 ; 0000-0001-9020-3714 ; 0000-0003-4475-6478</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11617029/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://pubs.aip.org/apb/article-lookup/doi/10.1063/5.0227135$$EHTML$$P50$$Gscitation$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27888,27922,27923,53789,53791,76178</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39634677$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-545390$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Cantoni, Federico</creatorcontrib><creatorcontrib>Barbe, Laurent</creatorcontrib><creatorcontrib>Roy, Ananya</creatorcontrib><creatorcontrib>Wicher, Grzegorz</creatorcontrib><creatorcontrib>Simonsson, Stina</creatorcontrib><creatorcontrib>Forsberg-Nilsson, Karin</creatorcontrib><creatorcontrib>Tenje, Maria</creatorcontrib><title>On-chip fabrication of tailored 3D hydrogel scaffolds to model cancer cell invasion and interaction with endothelial cells</title><title>APL bioengineering</title><addtitle>APL Bioeng</addtitle><description>The high mortality associated with certain cancers can be attributed to the invasive nature of the tumor cells. Yet, the complexity of studying invasion hinders our understanding of how the tumor spreads. This work presents a microengineered three-dimensional (3D) in vitro model for studying cancer cell invasion and interaction with endothelial cells. The model was generated by printing a biomimetic hydrogel scaffold directly on a chip using 2-photon polymerization that simulates the brain's extracellular matrix. The scaffold's geometry was specifically designed to facilitate the growth of a continuous layer of endothelial cells on one side, while also allowing for the introduction of tumor cells on the other side. This arrangement confines the cells spatially and enables in situ microscopy of the cancer cells as they invade the hydrogel scaffold and interact with the endothelial layer. We examined the impact of 3D printing parameters on the hydrogel's physical properties and used patient derived glioblastoma cells to study their effect on cell invasion. Notably, the tumor cells tended to infiltrate faster when an endothelial cell barrier was present. The potential for adjusting the hydrogel scaffold's properties, coupled with the capability for real-time observation of tumor-endothelial cell interactions, offers a platform for studying tumor invasion and tumor–endothelial cell interactions.</description><issn>2473-2877</issn><issn>2473-2877</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>AJDQP</sourceid><sourceid>DOA</sourceid><recordid>eNp9kktv1DAURiMEolXpgj-AvISKFL8dr1DV8qhUqRtgazl-TFx54sF2WpVfTyYzVJ0NK9vX5x4_9DXNWwTPEeTkEzuHGAtE2IvmGFNBWtwJ8fLZ_Kg5LeUOQogRkRLD180RkZxQLsRx8-d2bM0QNsDrPgeja0gjSB5UHWLKzgJyBYZHm9PKRVCM9j5FW0BNYJ3sXDJ6NC4D42IEYbzXZduvRzsvqsvaLL6HUAfgRpvq4GLQccHLm-aV17G40_140vz8-uXH5ff25vbb9eXFTWsopLVFVOreecG9Mx4RyzAn2GNCmCcGOoE6p3vJ0VwmXmJPUWexFIZ7JGUvMDlprndem_Sd2uSw1vlRJR3UUkh5pXSuwUSnTGekQcRpjxnthJUQE4MYY5ZzjCGcXR93rvLgNlN_YLsKvy4W2zQpRhmRW_zzDp_ZtbPGjTXreNB1uDOGQa3SvUKIIwGxnA3v94acfk-uVLUOZft9enRpKoogyhmGHNMZ_bBDTU6lZOefzkFQbaOimNpHZWbfPb_YE_kvGDNwtn-oCXVJxX9sfwGF1Mbk</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Cantoni, Federico</creator><creator>Barbe, Laurent</creator><creator>Roy, Ananya</creator><creator>Wicher, Grzegorz</creator><creator>Simonsson, Stina</creator><creator>Forsberg-Nilsson, Karin</creator><creator>Tenje, Maria</creator><general>AIP Publishing LLC</general><scope>AJDQP</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>ACNBI</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>DF2</scope><scope>ZZAVC</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7737-1374</orcidid><orcidid>https://orcid.org/0000-0003-0692-6245</orcidid><orcidid>https://orcid.org/0000-0002-1264-1337</orcidid><orcidid>https://orcid.org/0000-0002-3207-6339</orcidid><orcidid>https://orcid.org/0000-0002-3840-0312</orcidid><orcidid>https://orcid.org/0000-0001-9020-3714</orcidid><orcidid>https://orcid.org/0000-0003-4475-6478</orcidid></search><sort><creationdate>20241201</creationdate><title>On-chip fabrication of tailored 3D hydrogel scaffolds to model cancer cell invasion and interaction with endothelial cells</title><author>Cantoni, Federico ; Barbe, Laurent ; Roy, Ananya ; Wicher, Grzegorz ; Simonsson, Stina ; Forsberg-Nilsson, Karin ; Tenje, Maria</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c404t-149abef76fecf13d52632f2335f3c0e718eab9612633f92f418d297c6f199b723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cantoni, Federico</creatorcontrib><creatorcontrib>Barbe, Laurent</creatorcontrib><creatorcontrib>Roy, Ananya</creatorcontrib><creatorcontrib>Wicher, Grzegorz</creatorcontrib><creatorcontrib>Simonsson, Stina</creatorcontrib><creatorcontrib>Forsberg-Nilsson, Karin</creatorcontrib><creatorcontrib>Tenje, Maria</creatorcontrib><collection>AIP Open Access Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SWEPUB Uppsala universitet full text</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SWEPUB Uppsala universitet</collection><collection>SwePub Articles full text</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>APL bioengineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cantoni, Federico</au><au>Barbe, Laurent</au><au>Roy, Ananya</au><au>Wicher, Grzegorz</au><au>Simonsson, Stina</au><au>Forsberg-Nilsson, Karin</au><au>Tenje, Maria</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On-chip fabrication of tailored 3D hydrogel scaffolds to model cancer cell invasion and interaction with endothelial cells</atitle><jtitle>APL bioengineering</jtitle><addtitle>APL Bioeng</addtitle><date>2024-12-01</date><risdate>2024</risdate><volume>8</volume><issue>4</issue><spage>046113</spage><epage>046113-13</epage><pages>046113-046113-13</pages><issn>2473-2877</issn><eissn>2473-2877</eissn><coden>ABPID9</coden><abstract>The high mortality associated with certain cancers can be attributed to the invasive nature of the tumor cells. Yet, the complexity of studying invasion hinders our understanding of how the tumor spreads. This work presents a microengineered three-dimensional (3D) in vitro model for studying cancer cell invasion and interaction with endothelial cells. The model was generated by printing a biomimetic hydrogel scaffold directly on a chip using 2-photon polymerization that simulates the brain's extracellular matrix. The scaffold's geometry was specifically designed to facilitate the growth of a continuous layer of endothelial cells on one side, while also allowing for the introduction of tumor cells on the other side. This arrangement confines the cells spatially and enables in situ microscopy of the cancer cells as they invade the hydrogel scaffold and interact with the endothelial layer. We examined the impact of 3D printing parameters on the hydrogel's physical properties and used patient derived glioblastoma cells to study their effect on cell invasion. Notably, the tumor cells tended to infiltrate faster when an endothelial cell barrier was present. The potential for adjusting the hydrogel scaffold's properties, coupled with the capability for real-time observation of tumor-endothelial cell interactions, offers a platform for studying tumor invasion and tumor–endothelial cell interactions.</abstract><cop>United States</cop><pub>AIP Publishing LLC</pub><pmid>39634677</pmid><doi>10.1063/5.0227135</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-7737-1374</orcidid><orcidid>https://orcid.org/0000-0003-0692-6245</orcidid><orcidid>https://orcid.org/0000-0002-1264-1337</orcidid><orcidid>https://orcid.org/0000-0002-3207-6339</orcidid><orcidid>https://orcid.org/0000-0002-3840-0312</orcidid><orcidid>https://orcid.org/0000-0001-9020-3714</orcidid><orcidid>https://orcid.org/0000-0003-4475-6478</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2473-2877 |
ispartof | APL bioengineering, 2024-12, Vol.8 (4), p.046113-046113-13 |
issn | 2473-2877 2473-2877 |
language | eng |
recordid | cdi_proquest_miscellaneous_3146520624 |
source | AIP Open Access Journals; PubMed Central |
title | On-chip fabrication of tailored 3D hydrogel scaffolds to model cancer cell invasion and interaction with endothelial cells |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T10%3A18%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On-chip%20fabrication%20of%20tailored%203D%20hydrogel%20scaffolds%20to%20model%20cancer%20cell%20invasion%20and%20interaction%20with%20endothelial%20cells&rft.jtitle=APL%20bioengineering&rft.au=Cantoni,%20Federico&rft.date=2024-12-01&rft.volume=8&rft.issue=4&rft.spage=046113&rft.epage=046113-13&rft.pages=046113-046113-13&rft.issn=2473-2877&rft.eissn=2473-2877&rft.coden=ABPID9&rft_id=info:doi/10.1063/5.0227135&rft_dat=%3Cproquest_scita%3E3146520624%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c404t-149abef76fecf13d52632f2335f3c0e718eab9612633f92f418d297c6f199b723%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3146520624&rft_id=info:pmid/39634677&rfr_iscdi=true |