Loading…

Efficient strabismus diagnosis from small samples: Harnessing spatial features for improved accuracy

Strabismus is a common ophthalmological condition, and early diagnosis is crucial to preventing visual impairment and loss of stereopsis. However, traditional methods for diagnosing strabismus often rely on specialized ophthalmic equipment and trained personnel, limiting the widespread accessibility...

Full description

Saved in:
Bibliographic Details
Published in:Journal of biomedical informatics 2024-12, Vol.161, p.104759, Article 104759
Main Authors: Wu, Renzhong, Liao, Shenghui, Ji, Yongrong, Kui, Xiaoyan, Han, Fuchang, Hu, Ziyang, Song, Xuefei
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page 104759
container_title Journal of biomedical informatics
container_volume 161
creator Wu, Renzhong
Liao, Shenghui
Ji, Yongrong
Kui, Xiaoyan
Han, Fuchang
Hu, Ziyang
Song, Xuefei
description Strabismus is a common ophthalmological condition, and early diagnosis is crucial to preventing visual impairment and loss of stereopsis. However, traditional methods for diagnosing strabismus often rely on specialized ophthalmic equipment and trained personnel, limiting the widespread accessibility of strabismus diagnosis. Computer-aided strabismus diagnosis is an effective and widely used technology that assists clinicians in making clinical diagnoses and improving efficiency. To address this, we designed an efficient strabismus diagnosis model, RIS-MLP, based on a small number of samples derived from frontal facial images captured under natural lighting conditions via the Hirschberg test. The RIS-MLP combines light reflex point detection and iris detection modules to accurately extract key spatial features even under noisy and occluded conditions. The optimized spatial feature strategies further enhances the performance of the classification module. To validate the superiority of RIS-MLP, we conducted both direct and indirect comparative experiments. Indirect comparisons demonstrate that the RIS-MLP has advantages in terms of sample efficiency. While direct comparisons show that the RIS-MLP can mitigate overfitting to a certain extent, and the RIS-MLP along with its variants (e.g., RIS-SVM) have outperformed state-of-the-art models on our noisy and imbalanced dataset. [Display omitted]
doi_str_mv 10.1016/j.jbi.2024.104759
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_3146664270</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1532046424001771</els_id><sourcerecordid>3146664270</sourcerecordid><originalsourceid>FETCH-LOGICAL-e1082-c7fc13f4cf7215080474a050dbd17b680ba4fcf2787f6676fafd94c66d444ff83</originalsourceid><addsrcrecordid>eNo9kc1OwzAQhC0EoqXwAFyQj1xS7MSxUzihqlCkSlzgbDn-qRzFSfAmlfr2JGrhtLvSp93ZGYTuKVlSQvlTtaxKv0xJysaZiXx1geY0z9KEsIJc_veczdANQEUIpXnOr9EsW3EuOEnnyGyc89rbpsfQR1V6CANg49W-acEDdrENGIKqawwqdLWFZ7xVsbEAvtlj6FTvVY2dVf0Q7ci3EfvQxfZgDVZaD1Hp4y26cqoGe3euC_T9tvlab5Pd5_vH-nWXWEqKNNHCaZo5pp1IaU6K8SWmSE5MaagoeUFKxZx2qSiEm_Q75cyKac4NY8y5Ilugx9Pe8f7PYKGXwYO2da0a2w4gM8o45ywVZEQfzuhQBmtkF31Q8Sj_nBmBlxNgR8EHb6OEySZtjY9W99K0XlIipxxkJccc5JSDPOWQ_QJ4ZHuk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3146664270</pqid></control><display><type>article</type><title>Efficient strabismus diagnosis from small samples: Harnessing spatial features for improved accuracy</title><source>ScienceDirect Freedom Collection</source><creator>Wu, Renzhong ; Liao, Shenghui ; Ji, Yongrong ; Kui, Xiaoyan ; Han, Fuchang ; Hu, Ziyang ; Song, Xuefei</creator><creatorcontrib>Wu, Renzhong ; Liao, Shenghui ; Ji, Yongrong ; Kui, Xiaoyan ; Han, Fuchang ; Hu, Ziyang ; Song, Xuefei</creatorcontrib><description>Strabismus is a common ophthalmological condition, and early diagnosis is crucial to preventing visual impairment and loss of stereopsis. However, traditional methods for diagnosing strabismus often rely on specialized ophthalmic equipment and trained personnel, limiting the widespread accessibility of strabismus diagnosis. Computer-aided strabismus diagnosis is an effective and widely used technology that assists clinicians in making clinical diagnoses and improving efficiency. To address this, we designed an efficient strabismus diagnosis model, RIS-MLP, based on a small number of samples derived from frontal facial images captured under natural lighting conditions via the Hirschberg test. The RIS-MLP combines light reflex point detection and iris detection modules to accurately extract key spatial features even under noisy and occluded conditions. The optimized spatial feature strategies further enhances the performance of the classification module. To validate the superiority of RIS-MLP, we conducted both direct and indirect comparative experiments. Indirect comparisons demonstrate that the RIS-MLP has advantages in terms of sample efficiency. While direct comparisons show that the RIS-MLP can mitigate overfitting to a certain extent, and the RIS-MLP along with its variants (e.g., RIS-SVM) have outperformed state-of-the-art models on our noisy and imbalanced dataset. [Display omitted]</description><identifier>ISSN: 1532-0464</identifier><identifier>ISSN: 1532-0480</identifier><identifier>EISSN: 1532-0480</identifier><identifier>DOI: 10.1016/j.jbi.2024.104759</identifier><identifier>PMID: 39667602</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Hirschberg test ; Medical image processing ; Small samples learning ; Spatial features ; Strabismus diagnosis</subject><ispartof>Journal of biomedical informatics, 2024-12, Vol.161, p.104759, Article 104759</ispartof><rights>2024</rights><rights>Copyright © 2024. Published by Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39667602$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wu, Renzhong</creatorcontrib><creatorcontrib>Liao, Shenghui</creatorcontrib><creatorcontrib>Ji, Yongrong</creatorcontrib><creatorcontrib>Kui, Xiaoyan</creatorcontrib><creatorcontrib>Han, Fuchang</creatorcontrib><creatorcontrib>Hu, Ziyang</creatorcontrib><creatorcontrib>Song, Xuefei</creatorcontrib><title>Efficient strabismus diagnosis from small samples: Harnessing spatial features for improved accuracy</title><title>Journal of biomedical informatics</title><addtitle>J Biomed Inform</addtitle><description>Strabismus is a common ophthalmological condition, and early diagnosis is crucial to preventing visual impairment and loss of stereopsis. However, traditional methods for diagnosing strabismus often rely on specialized ophthalmic equipment and trained personnel, limiting the widespread accessibility of strabismus diagnosis. Computer-aided strabismus diagnosis is an effective and widely used technology that assists clinicians in making clinical diagnoses and improving efficiency. To address this, we designed an efficient strabismus diagnosis model, RIS-MLP, based on a small number of samples derived from frontal facial images captured under natural lighting conditions via the Hirschberg test. The RIS-MLP combines light reflex point detection and iris detection modules to accurately extract key spatial features even under noisy and occluded conditions. The optimized spatial feature strategies further enhances the performance of the classification module. To validate the superiority of RIS-MLP, we conducted both direct and indirect comparative experiments. Indirect comparisons demonstrate that the RIS-MLP has advantages in terms of sample efficiency. While direct comparisons show that the RIS-MLP can mitigate overfitting to a certain extent, and the RIS-MLP along with its variants (e.g., RIS-SVM) have outperformed state-of-the-art models on our noisy and imbalanced dataset. [Display omitted]</description><subject>Hirschberg test</subject><subject>Medical image processing</subject><subject>Small samples learning</subject><subject>Spatial features</subject><subject>Strabismus diagnosis</subject><issn>1532-0464</issn><issn>1532-0480</issn><issn>1532-0480</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kc1OwzAQhC0EoqXwAFyQj1xS7MSxUzihqlCkSlzgbDn-qRzFSfAmlfr2JGrhtLvSp93ZGYTuKVlSQvlTtaxKv0xJysaZiXx1geY0z9KEsIJc_veczdANQEUIpXnOr9EsW3EuOEnnyGyc89rbpsfQR1V6CANg49W-acEDdrENGIKqawwqdLWFZ7xVsbEAvtlj6FTvVY2dVf0Q7ci3EfvQxfZgDVZaD1Hp4y26cqoGe3euC_T9tvlab5Pd5_vH-nWXWEqKNNHCaZo5pp1IaU6K8SWmSE5MaagoeUFKxZx2qSiEm_Q75cyKac4NY8y5Ilugx9Pe8f7PYKGXwYO2da0a2w4gM8o45ywVZEQfzuhQBmtkF31Q8Sj_nBmBlxNgR8EHb6OEySZtjY9W99K0XlIipxxkJccc5JSDPOWQ_QJ4ZHuk</recordid><startdate>20241210</startdate><enddate>20241210</enddate><creator>Wu, Renzhong</creator><creator>Liao, Shenghui</creator><creator>Ji, Yongrong</creator><creator>Kui, Xiaoyan</creator><creator>Han, Fuchang</creator><creator>Hu, Ziyang</creator><creator>Song, Xuefei</creator><general>Elsevier Inc</general><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>20241210</creationdate><title>Efficient strabismus diagnosis from small samples: Harnessing spatial features for improved accuracy</title><author>Wu, Renzhong ; Liao, Shenghui ; Ji, Yongrong ; Kui, Xiaoyan ; Han, Fuchang ; Hu, Ziyang ; Song, Xuefei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-e1082-c7fc13f4cf7215080474a050dbd17b680ba4fcf2787f6676fafd94c66d444ff83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Hirschberg test</topic><topic>Medical image processing</topic><topic>Small samples learning</topic><topic>Spatial features</topic><topic>Strabismus diagnosis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Renzhong</creatorcontrib><creatorcontrib>Liao, Shenghui</creatorcontrib><creatorcontrib>Ji, Yongrong</creatorcontrib><creatorcontrib>Kui, Xiaoyan</creatorcontrib><creatorcontrib>Han, Fuchang</creatorcontrib><creatorcontrib>Hu, Ziyang</creatorcontrib><creatorcontrib>Song, Xuefei</creatorcontrib><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of biomedical informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Renzhong</au><au>Liao, Shenghui</au><au>Ji, Yongrong</au><au>Kui, Xiaoyan</au><au>Han, Fuchang</au><au>Hu, Ziyang</au><au>Song, Xuefei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient strabismus diagnosis from small samples: Harnessing spatial features for improved accuracy</atitle><jtitle>Journal of biomedical informatics</jtitle><addtitle>J Biomed Inform</addtitle><date>2024-12-10</date><risdate>2024</risdate><volume>161</volume><spage>104759</spage><pages>104759-</pages><artnum>104759</artnum><issn>1532-0464</issn><issn>1532-0480</issn><eissn>1532-0480</eissn><abstract>Strabismus is a common ophthalmological condition, and early diagnosis is crucial to preventing visual impairment and loss of stereopsis. However, traditional methods for diagnosing strabismus often rely on specialized ophthalmic equipment and trained personnel, limiting the widespread accessibility of strabismus diagnosis. Computer-aided strabismus diagnosis is an effective and widely used technology that assists clinicians in making clinical diagnoses and improving efficiency. To address this, we designed an efficient strabismus diagnosis model, RIS-MLP, based on a small number of samples derived from frontal facial images captured under natural lighting conditions via the Hirschberg test. The RIS-MLP combines light reflex point detection and iris detection modules to accurately extract key spatial features even under noisy and occluded conditions. The optimized spatial feature strategies further enhances the performance of the classification module. To validate the superiority of RIS-MLP, we conducted both direct and indirect comparative experiments. Indirect comparisons demonstrate that the RIS-MLP has advantages in terms of sample efficiency. While direct comparisons show that the RIS-MLP can mitigate overfitting to a certain extent, and the RIS-MLP along with its variants (e.g., RIS-SVM) have outperformed state-of-the-art models on our noisy and imbalanced dataset. [Display omitted]</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>39667602</pmid><doi>10.1016/j.jbi.2024.104759</doi></addata></record>
fulltext fulltext
identifier ISSN: 1532-0464
ispartof Journal of biomedical informatics, 2024-12, Vol.161, p.104759, Article 104759
issn 1532-0464
1532-0480
1532-0480
language eng
recordid cdi_proquest_miscellaneous_3146664270
source ScienceDirect Freedom Collection
subjects Hirschberg test
Medical image processing
Small samples learning
Spatial features
Strabismus diagnosis
title Efficient strabismus diagnosis from small samples: Harnessing spatial features for improved accuracy
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T02%3A05%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20strabismus%20diagnosis%20from%20small%20samples:%20Harnessing%20spatial%20features%20for%20improved%20accuracy&rft.jtitle=Journal%20of%20biomedical%20informatics&rft.au=Wu,%20Renzhong&rft.date=2024-12-10&rft.volume=161&rft.spage=104759&rft.pages=104759-&rft.artnum=104759&rft.issn=1532-0464&rft.eissn=1532-0480&rft_id=info:doi/10.1016/j.jbi.2024.104759&rft_dat=%3Cproquest_pubme%3E3146664270%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-e1082-c7fc13f4cf7215080474a050dbd17b680ba4fcf2787f6676fafd94c66d444ff83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3146664270&rft_id=info:pmid/39667602&rfr_iscdi=true