Loading…
Experimental Definition of the S = 1 π vs S = 2 σ Reactivity and S = 2 Character in the Ground State of an S = 1 FeIVO Complex
Iron(IV)-oxo intermediates found in iron enzymes and artificial catalysts are competent for H atom abstraction in catalytic cycles. For S = 2 intermediates, both axial and equatorial approaches are well-established. The mechanism for S = 1 sites is not as well understood: an equatorial approach is...
Saved in:
Published in: | Journal of the American Chemical Society 2024-12, Vol.146 (51), p.35139-35145 |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Iron(IV)-oxo intermediates found in iron enzymes and artificial catalysts are competent for H atom abstraction in catalytic cycles. For S = 2 intermediates, both axial and equatorial approaches are well-established. The mechanism for S = 1 sites is not as well understood: an equatorial approach is more energetically favorable, and an axial approach requires crossing from the S = 1 to the S = 2 surface. In this study, we use 1s2p resonant inelastic X-ray scattering (RIXS) and Fe L-edge X-ray absorption spectroscopy on the S = 1 [FeIVO(TMC)(CH3CN)]2+ and observe both S = 2 and S = 1 final states, which enables the experimental evaluation of the energetics of the axial and equatorial reactivity of an S = 1 FeIVO center on its S = 2 vs S = 1 surface. The observation of S = 2 final states in the RIXS spectrum demonstrates significant S = 2 character spin–orbit mixed into the S = 1 ground state. |
---|---|
ISSN: | 0002-7863 1520-5126 1520-5126 |
DOI: | 10.1021/jacs.4c11034 |