Loading…

Harnessing Ammonia as a Hydrogen Carrier for Integrated CO2 Capture and Reverse Water–Gas Shift

In this paper, a concept of integrated CO2 capture and reverse water–gas shift (ICCrWGS) process was proposed using NH3 as the H2 carrier. The CO2 efficiency and total thermal energy consumption for the conventional rWGS, ICCrWGS using H2 (H2-ICCrWGS) and NH3 (NH3-ICCrWGS), were calculated. ICCrWGS...

Full description

Saved in:
Bibliographic Details
Published in:ACS applied materials & interfaces 2024-12, Vol.16 (51), p.70575-70586
Main Authors: Jo, Seongbin, Woo, Jin Hyeok, Kim, Ju Eon, Kim, Tae Young, Ryu, Ho-Jung, Hwang, Byungwook, Kim, Jae Chang, Lee, Soo Chool, Gilliard-AbdulAziz, Kandis Leslie
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 70586
container_issue 51
container_start_page 70575
container_title ACS applied materials & interfaces
container_volume 16
creator Jo, Seongbin
Woo, Jin Hyeok
Kim, Ju Eon
Kim, Tae Young
Ryu, Ho-Jung
Hwang, Byungwook
Kim, Jae Chang
Lee, Soo Chool
Gilliard-AbdulAziz, Kandis Leslie
description In this paper, a concept of integrated CO2 capture and reverse water–gas shift (ICCrWGS) process was proposed using NH3 as the H2 carrier. The CO2 efficiency and total thermal energy consumption for the conventional rWGS, ICCrWGS using H2 (H2-ICCrWGS) and NH3 (NH3-ICCrWGS), were calculated. ICCrWGS using H2 and NH3 was conducted over the thermally stable Ni/CaZr dual-function materials (DFMs). NH3 decomposition, CO2 capture capacity, CO2 conversion, and CO selectivity were addressed at different reaction temperatures, and the optimal temperature was determined to be 650 °C. The Ni/CaZr DFMs exhibited stable CO2 capture capacity and CO productivity during ICCrWGS using the NH3 carrier. A carbonate spillover mechanism for CO production over the Ni/CaZr DFMs in NH3-ICCrWGS was proposed using in situ diffuse reflectance infrared Fourier transform spectroscopy. It was found that CO is produced from the bridged bidentate carbonate route in the Ni–CaO interface.
doi_str_mv 10.1021/acsami.4c16632
format article
fullrecord <record><control><sourceid>proquest_acs_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_3146846567</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3146846567</sourcerecordid><originalsourceid>FETCH-LOGICAL-a153t-fa71891f6bd6325ee76cef4d95052d02eff4cf84607c9a42f3e5205917b678c43</originalsourceid><addsrcrecordid>eNo9kE9LAzEQxYMoWKtXzzmKsDXJJtndY1m0LRQK_sFjmO5O6pZutia7gje_g9_QT2KkxdMMvDePNz9CrjmbcCb4HVQB2mYiK651Kk7IiBdSJrlQ4vR_l_KcXISwZSxamBoRmIN3GELjNnTatp1rgEKgQOefte826GgJ3jfoqe08XbgeNx56rGm5ElHa94NHCq6mj_iBPiB9jar_-fqexZSnt8b2l-TMwi7g1XGOycvD_XM5T5ar2aKcLhPgKu0TCxnPC271uo7VFGKmK7SyLhRTomYCrZWVzaVmWVWAFDZFFT8oeLbWWV7JdExuDrl7370PGHrTNqHC3Q4cdkMwKZc6niudRevtwRqRmW03eBeLGc7MH0dz4GiOHNNfdg5nbQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3146846567</pqid></control><display><type>article</type><title>Harnessing Ammonia as a Hydrogen Carrier for Integrated CO2 Capture and Reverse Water–Gas Shift</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Jo, Seongbin ; Woo, Jin Hyeok ; Kim, Ju Eon ; Kim, Tae Young ; Ryu, Ho-Jung ; Hwang, Byungwook ; Kim, Jae Chang ; Lee, Soo Chool ; Gilliard-AbdulAziz, Kandis Leslie</creator><creatorcontrib>Jo, Seongbin ; Woo, Jin Hyeok ; Kim, Ju Eon ; Kim, Tae Young ; Ryu, Ho-Jung ; Hwang, Byungwook ; Kim, Jae Chang ; Lee, Soo Chool ; Gilliard-AbdulAziz, Kandis Leslie</creatorcontrib><description>In this paper, a concept of integrated CO2 capture and reverse water–gas shift (ICCrWGS) process was proposed using NH3 as the H2 carrier. The CO2 efficiency and total thermal energy consumption for the conventional rWGS, ICCrWGS using H2 (H2-ICCrWGS) and NH3 (NH3-ICCrWGS), were calculated. ICCrWGS using H2 and NH3 was conducted over the thermally stable Ni/CaZr dual-function materials (DFMs). NH3 decomposition, CO2 capture capacity, CO2 conversion, and CO selectivity were addressed at different reaction temperatures, and the optimal temperature was determined to be 650 °C. The Ni/CaZr DFMs exhibited stable CO2 capture capacity and CO productivity during ICCrWGS using the NH3 carrier. A carbonate spillover mechanism for CO production over the Ni/CaZr DFMs in NH3-ICCrWGS was proposed using in situ diffuse reflectance infrared Fourier transform spectroscopy. It was found that CO is produced from the bridged bidentate carbonate route in the Ni–CaO interface.</description><identifier>ISSN: 1944-8244</identifier><identifier>ISSN: 1944-8252</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.4c16632</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>Energy, Environmental, and Catalysis Applications</subject><ispartof>ACS applied materials &amp; interfaces, 2024-12, Vol.16 (51), p.70575-70586</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-6622-3616 ; 0000-0002-1706-9552 ; 0000-0003-2172-2881</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Jo, Seongbin</creatorcontrib><creatorcontrib>Woo, Jin Hyeok</creatorcontrib><creatorcontrib>Kim, Ju Eon</creatorcontrib><creatorcontrib>Kim, Tae Young</creatorcontrib><creatorcontrib>Ryu, Ho-Jung</creatorcontrib><creatorcontrib>Hwang, Byungwook</creatorcontrib><creatorcontrib>Kim, Jae Chang</creatorcontrib><creatorcontrib>Lee, Soo Chool</creatorcontrib><creatorcontrib>Gilliard-AbdulAziz, Kandis Leslie</creatorcontrib><title>Harnessing Ammonia as a Hydrogen Carrier for Integrated CO2 Capture and Reverse Water–Gas Shift</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>In this paper, a concept of integrated CO2 capture and reverse water–gas shift (ICCrWGS) process was proposed using NH3 as the H2 carrier. The CO2 efficiency and total thermal energy consumption for the conventional rWGS, ICCrWGS using H2 (H2-ICCrWGS) and NH3 (NH3-ICCrWGS), were calculated. ICCrWGS using H2 and NH3 was conducted over the thermally stable Ni/CaZr dual-function materials (DFMs). NH3 decomposition, CO2 capture capacity, CO2 conversion, and CO selectivity were addressed at different reaction temperatures, and the optimal temperature was determined to be 650 °C. The Ni/CaZr DFMs exhibited stable CO2 capture capacity and CO productivity during ICCrWGS using the NH3 carrier. A carbonate spillover mechanism for CO production over the Ni/CaZr DFMs in NH3-ICCrWGS was proposed using in situ diffuse reflectance infrared Fourier transform spectroscopy. It was found that CO is produced from the bridged bidentate carbonate route in the Ni–CaO interface.</description><subject>Energy, Environmental, and Catalysis Applications</subject><issn>1944-8244</issn><issn>1944-8252</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kE9LAzEQxYMoWKtXzzmKsDXJJtndY1m0LRQK_sFjmO5O6pZutia7gje_g9_QT2KkxdMMvDePNz9CrjmbcCb4HVQB2mYiK651Kk7IiBdSJrlQ4vR_l_KcXISwZSxamBoRmIN3GELjNnTatp1rgEKgQOefte826GgJ3jfoqe08XbgeNx56rGm5ElHa94NHCq6mj_iBPiB9jar_-fqexZSnt8b2l-TMwi7g1XGOycvD_XM5T5ar2aKcLhPgKu0TCxnPC271uo7VFGKmK7SyLhRTomYCrZWVzaVmWVWAFDZFFT8oeLbWWV7JdExuDrl7370PGHrTNqHC3Q4cdkMwKZc6niudRevtwRqRmW03eBeLGc7MH0dz4GiOHNNfdg5nbQ</recordid><startdate>20241225</startdate><enddate>20241225</enddate><creator>Jo, Seongbin</creator><creator>Woo, Jin Hyeok</creator><creator>Kim, Ju Eon</creator><creator>Kim, Tae Young</creator><creator>Ryu, Ho-Jung</creator><creator>Hwang, Byungwook</creator><creator>Kim, Jae Chang</creator><creator>Lee, Soo Chool</creator><creator>Gilliard-AbdulAziz, Kandis Leslie</creator><general>American Chemical Society</general><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6622-3616</orcidid><orcidid>https://orcid.org/0000-0002-1706-9552</orcidid><orcidid>https://orcid.org/0000-0003-2172-2881</orcidid></search><sort><creationdate>20241225</creationdate><title>Harnessing Ammonia as a Hydrogen Carrier for Integrated CO2 Capture and Reverse Water–Gas Shift</title><author>Jo, Seongbin ; Woo, Jin Hyeok ; Kim, Ju Eon ; Kim, Tae Young ; Ryu, Ho-Jung ; Hwang, Byungwook ; Kim, Jae Chang ; Lee, Soo Chool ; Gilliard-AbdulAziz, Kandis Leslie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a153t-fa71891f6bd6325ee76cef4d95052d02eff4cf84607c9a42f3e5205917b678c43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Energy, Environmental, and Catalysis Applications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jo, Seongbin</creatorcontrib><creatorcontrib>Woo, Jin Hyeok</creatorcontrib><creatorcontrib>Kim, Ju Eon</creatorcontrib><creatorcontrib>Kim, Tae Young</creatorcontrib><creatorcontrib>Ryu, Ho-Jung</creatorcontrib><creatorcontrib>Hwang, Byungwook</creatorcontrib><creatorcontrib>Kim, Jae Chang</creatorcontrib><creatorcontrib>Lee, Soo Chool</creatorcontrib><creatorcontrib>Gilliard-AbdulAziz, Kandis Leslie</creatorcontrib><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jo, Seongbin</au><au>Woo, Jin Hyeok</au><au>Kim, Ju Eon</au><au>Kim, Tae Young</au><au>Ryu, Ho-Jung</au><au>Hwang, Byungwook</au><au>Kim, Jae Chang</au><au>Lee, Soo Chool</au><au>Gilliard-AbdulAziz, Kandis Leslie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Harnessing Ammonia as a Hydrogen Carrier for Integrated CO2 Capture and Reverse Water–Gas Shift</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2024-12-25</date><risdate>2024</risdate><volume>16</volume><issue>51</issue><spage>70575</spage><epage>70586</epage><pages>70575-70586</pages><issn>1944-8244</issn><issn>1944-8252</issn><eissn>1944-8252</eissn><abstract>In this paper, a concept of integrated CO2 capture and reverse water–gas shift (ICCrWGS) process was proposed using NH3 as the H2 carrier. The CO2 efficiency and total thermal energy consumption for the conventional rWGS, ICCrWGS using H2 (H2-ICCrWGS) and NH3 (NH3-ICCrWGS), were calculated. ICCrWGS using H2 and NH3 was conducted over the thermally stable Ni/CaZr dual-function materials (DFMs). NH3 decomposition, CO2 capture capacity, CO2 conversion, and CO selectivity were addressed at different reaction temperatures, and the optimal temperature was determined to be 650 °C. The Ni/CaZr DFMs exhibited stable CO2 capture capacity and CO productivity during ICCrWGS using the NH3 carrier. A carbonate spillover mechanism for CO production over the Ni/CaZr DFMs in NH3-ICCrWGS was proposed using in situ diffuse reflectance infrared Fourier transform spectroscopy. It was found that CO is produced from the bridged bidentate carbonate route in the Ni–CaO interface.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsami.4c16632</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-6622-3616</orcidid><orcidid>https://orcid.org/0000-0002-1706-9552</orcidid><orcidid>https://orcid.org/0000-0003-2172-2881</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2024-12, Vol.16 (51), p.70575-70586
issn 1944-8244
1944-8252
1944-8252
language eng
recordid cdi_proquest_miscellaneous_3146846567
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Energy, Environmental, and Catalysis Applications
title Harnessing Ammonia as a Hydrogen Carrier for Integrated CO2 Capture and Reverse Water–Gas Shift
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T16%3A01%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_acs_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Harnessing%20Ammonia%20as%20a%20Hydrogen%20Carrier%20for%20Integrated%20CO2%20Capture%20and%20Reverse%20Water%E2%80%93Gas%20Shift&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Jo,%20Seongbin&rft.date=2024-12-25&rft.volume=16&rft.issue=51&rft.spage=70575&rft.epage=70586&rft.pages=70575-70586&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.4c16632&rft_dat=%3Cproquest_acs_j%3E3146846567%3C/proquest_acs_j%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a153t-fa71891f6bd6325ee76cef4d95052d02eff4cf84607c9a42f3e5205917b678c43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3146846567&rft_id=info:pmid/&rfr_iscdi=true