Loading…
Harnessing Ammonia as a Hydrogen Carrier for Integrated CO2 Capture and Reverse Water–Gas Shift
In this paper, a concept of integrated CO2 capture and reverse water–gas shift (ICCrWGS) process was proposed using NH3 as the H2 carrier. The CO2 efficiency and total thermal energy consumption for the conventional rWGS, ICCrWGS using H2 (H2-ICCrWGS) and NH3 (NH3-ICCrWGS), were calculated. ICCrWGS...
Saved in:
Published in: | ACS applied materials & interfaces 2024-12, Vol.16 (51), p.70575-70586 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 70586 |
container_issue | 51 |
container_start_page | 70575 |
container_title | ACS applied materials & interfaces |
container_volume | 16 |
creator | Jo, Seongbin Woo, Jin Hyeok Kim, Ju Eon Kim, Tae Young Ryu, Ho-Jung Hwang, Byungwook Kim, Jae Chang Lee, Soo Chool Gilliard-AbdulAziz, Kandis Leslie |
description | In this paper, a concept of integrated CO2 capture and reverse water–gas shift (ICCrWGS) process was proposed using NH3 as the H2 carrier. The CO2 efficiency and total thermal energy consumption for the conventional rWGS, ICCrWGS using H2 (H2-ICCrWGS) and NH3 (NH3-ICCrWGS), were calculated. ICCrWGS using H2 and NH3 was conducted over the thermally stable Ni/CaZr dual-function materials (DFMs). NH3 decomposition, CO2 capture capacity, CO2 conversion, and CO selectivity were addressed at different reaction temperatures, and the optimal temperature was determined to be 650 °C. The Ni/CaZr DFMs exhibited stable CO2 capture capacity and CO productivity during ICCrWGS using the NH3 carrier. A carbonate spillover mechanism for CO production over the Ni/CaZr DFMs in NH3-ICCrWGS was proposed using in situ diffuse reflectance infrared Fourier transform spectroscopy. It was found that CO is produced from the bridged bidentate carbonate route in the Ni–CaO interface. |
doi_str_mv | 10.1021/acsami.4c16632 |
format | article |
fullrecord | <record><control><sourceid>proquest_acs_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_3146846567</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3146846567</sourcerecordid><originalsourceid>FETCH-LOGICAL-a153t-fa71891f6bd6325ee76cef4d95052d02eff4cf84607c9a42f3e5205917b678c43</originalsourceid><addsrcrecordid>eNo9kE9LAzEQxYMoWKtXzzmKsDXJJtndY1m0LRQK_sFjmO5O6pZutia7gje_g9_QT2KkxdMMvDePNz9CrjmbcCb4HVQB2mYiK651Kk7IiBdSJrlQ4vR_l_KcXISwZSxamBoRmIN3GELjNnTatp1rgEKgQOefte826GgJ3jfoqe08XbgeNx56rGm5ElHa94NHCq6mj_iBPiB9jar_-fqexZSnt8b2l-TMwi7g1XGOycvD_XM5T5ar2aKcLhPgKu0TCxnPC271uo7VFGKmK7SyLhRTomYCrZWVzaVmWVWAFDZFFT8oeLbWWV7JdExuDrl7370PGHrTNqHC3Q4cdkMwKZc6niudRevtwRqRmW03eBeLGc7MH0dz4GiOHNNfdg5nbQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3146846567</pqid></control><display><type>article</type><title>Harnessing Ammonia as a Hydrogen Carrier for Integrated CO2 Capture and Reverse Water–Gas Shift</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Jo, Seongbin ; Woo, Jin Hyeok ; Kim, Ju Eon ; Kim, Tae Young ; Ryu, Ho-Jung ; Hwang, Byungwook ; Kim, Jae Chang ; Lee, Soo Chool ; Gilliard-AbdulAziz, Kandis Leslie</creator><creatorcontrib>Jo, Seongbin ; Woo, Jin Hyeok ; Kim, Ju Eon ; Kim, Tae Young ; Ryu, Ho-Jung ; Hwang, Byungwook ; Kim, Jae Chang ; Lee, Soo Chool ; Gilliard-AbdulAziz, Kandis Leslie</creatorcontrib><description>In this paper, a concept of integrated CO2 capture and reverse water–gas shift (ICCrWGS) process was proposed using NH3 as the H2 carrier. The CO2 efficiency and total thermal energy consumption for the conventional rWGS, ICCrWGS using H2 (H2-ICCrWGS) and NH3 (NH3-ICCrWGS), were calculated. ICCrWGS using H2 and NH3 was conducted over the thermally stable Ni/CaZr dual-function materials (DFMs). NH3 decomposition, CO2 capture capacity, CO2 conversion, and CO selectivity were addressed at different reaction temperatures, and the optimal temperature was determined to be 650 °C. The Ni/CaZr DFMs exhibited stable CO2 capture capacity and CO productivity during ICCrWGS using the NH3 carrier. A carbonate spillover mechanism for CO production over the Ni/CaZr DFMs in NH3-ICCrWGS was proposed using in situ diffuse reflectance infrared Fourier transform spectroscopy. It was found that CO is produced from the bridged bidentate carbonate route in the Ni–CaO interface.</description><identifier>ISSN: 1944-8244</identifier><identifier>ISSN: 1944-8252</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.4c16632</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>Energy, Environmental, and Catalysis Applications</subject><ispartof>ACS applied materials & interfaces, 2024-12, Vol.16 (51), p.70575-70586</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-6622-3616 ; 0000-0002-1706-9552 ; 0000-0003-2172-2881</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Jo, Seongbin</creatorcontrib><creatorcontrib>Woo, Jin Hyeok</creatorcontrib><creatorcontrib>Kim, Ju Eon</creatorcontrib><creatorcontrib>Kim, Tae Young</creatorcontrib><creatorcontrib>Ryu, Ho-Jung</creatorcontrib><creatorcontrib>Hwang, Byungwook</creatorcontrib><creatorcontrib>Kim, Jae Chang</creatorcontrib><creatorcontrib>Lee, Soo Chool</creatorcontrib><creatorcontrib>Gilliard-AbdulAziz, Kandis Leslie</creatorcontrib><title>Harnessing Ammonia as a Hydrogen Carrier for Integrated CO2 Capture and Reverse Water–Gas Shift</title><title>ACS applied materials & interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>In this paper, a concept of integrated CO2 capture and reverse water–gas shift (ICCrWGS) process was proposed using NH3 as the H2 carrier. The CO2 efficiency and total thermal energy consumption for the conventional rWGS, ICCrWGS using H2 (H2-ICCrWGS) and NH3 (NH3-ICCrWGS), were calculated. ICCrWGS using H2 and NH3 was conducted over the thermally stable Ni/CaZr dual-function materials (DFMs). NH3 decomposition, CO2 capture capacity, CO2 conversion, and CO selectivity were addressed at different reaction temperatures, and the optimal temperature was determined to be 650 °C. The Ni/CaZr DFMs exhibited stable CO2 capture capacity and CO productivity during ICCrWGS using the NH3 carrier. A carbonate spillover mechanism for CO production over the Ni/CaZr DFMs in NH3-ICCrWGS was proposed using in situ diffuse reflectance infrared Fourier transform spectroscopy. It was found that CO is produced from the bridged bidentate carbonate route in the Ni–CaO interface.</description><subject>Energy, Environmental, and Catalysis Applications</subject><issn>1944-8244</issn><issn>1944-8252</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kE9LAzEQxYMoWKtXzzmKsDXJJtndY1m0LRQK_sFjmO5O6pZutia7gje_g9_QT2KkxdMMvDePNz9CrjmbcCb4HVQB2mYiK651Kk7IiBdSJrlQ4vR_l_KcXISwZSxamBoRmIN3GELjNnTatp1rgEKgQOefte826GgJ3jfoqe08XbgeNx56rGm5ElHa94NHCq6mj_iBPiB9jar_-fqexZSnt8b2l-TMwi7g1XGOycvD_XM5T5ar2aKcLhPgKu0TCxnPC271uo7VFGKmK7SyLhRTomYCrZWVzaVmWVWAFDZFFT8oeLbWWV7JdExuDrl7370PGHrTNqHC3Q4cdkMwKZc6niudRevtwRqRmW03eBeLGc7MH0dz4GiOHNNfdg5nbQ</recordid><startdate>20241225</startdate><enddate>20241225</enddate><creator>Jo, Seongbin</creator><creator>Woo, Jin Hyeok</creator><creator>Kim, Ju Eon</creator><creator>Kim, Tae Young</creator><creator>Ryu, Ho-Jung</creator><creator>Hwang, Byungwook</creator><creator>Kim, Jae Chang</creator><creator>Lee, Soo Chool</creator><creator>Gilliard-AbdulAziz, Kandis Leslie</creator><general>American Chemical Society</general><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6622-3616</orcidid><orcidid>https://orcid.org/0000-0002-1706-9552</orcidid><orcidid>https://orcid.org/0000-0003-2172-2881</orcidid></search><sort><creationdate>20241225</creationdate><title>Harnessing Ammonia as a Hydrogen Carrier for Integrated CO2 Capture and Reverse Water–Gas Shift</title><author>Jo, Seongbin ; Woo, Jin Hyeok ; Kim, Ju Eon ; Kim, Tae Young ; Ryu, Ho-Jung ; Hwang, Byungwook ; Kim, Jae Chang ; Lee, Soo Chool ; Gilliard-AbdulAziz, Kandis Leslie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a153t-fa71891f6bd6325ee76cef4d95052d02eff4cf84607c9a42f3e5205917b678c43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Energy, Environmental, and Catalysis Applications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jo, Seongbin</creatorcontrib><creatorcontrib>Woo, Jin Hyeok</creatorcontrib><creatorcontrib>Kim, Ju Eon</creatorcontrib><creatorcontrib>Kim, Tae Young</creatorcontrib><creatorcontrib>Ryu, Ho-Jung</creatorcontrib><creatorcontrib>Hwang, Byungwook</creatorcontrib><creatorcontrib>Kim, Jae Chang</creatorcontrib><creatorcontrib>Lee, Soo Chool</creatorcontrib><creatorcontrib>Gilliard-AbdulAziz, Kandis Leslie</creatorcontrib><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials & interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jo, Seongbin</au><au>Woo, Jin Hyeok</au><au>Kim, Ju Eon</au><au>Kim, Tae Young</au><au>Ryu, Ho-Jung</au><au>Hwang, Byungwook</au><au>Kim, Jae Chang</au><au>Lee, Soo Chool</au><au>Gilliard-AbdulAziz, Kandis Leslie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Harnessing Ammonia as a Hydrogen Carrier for Integrated CO2 Capture and Reverse Water–Gas Shift</atitle><jtitle>ACS applied materials & interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2024-12-25</date><risdate>2024</risdate><volume>16</volume><issue>51</issue><spage>70575</spage><epage>70586</epage><pages>70575-70586</pages><issn>1944-8244</issn><issn>1944-8252</issn><eissn>1944-8252</eissn><abstract>In this paper, a concept of integrated CO2 capture and reverse water–gas shift (ICCrWGS) process was proposed using NH3 as the H2 carrier. The CO2 efficiency and total thermal energy consumption for the conventional rWGS, ICCrWGS using H2 (H2-ICCrWGS) and NH3 (NH3-ICCrWGS), were calculated. ICCrWGS using H2 and NH3 was conducted over the thermally stable Ni/CaZr dual-function materials (DFMs). NH3 decomposition, CO2 capture capacity, CO2 conversion, and CO selectivity were addressed at different reaction temperatures, and the optimal temperature was determined to be 650 °C. The Ni/CaZr DFMs exhibited stable CO2 capture capacity and CO productivity during ICCrWGS using the NH3 carrier. A carbonate spillover mechanism for CO production over the Ni/CaZr DFMs in NH3-ICCrWGS was proposed using in situ diffuse reflectance infrared Fourier transform spectroscopy. It was found that CO is produced from the bridged bidentate carbonate route in the Ni–CaO interface.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsami.4c16632</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-6622-3616</orcidid><orcidid>https://orcid.org/0000-0002-1706-9552</orcidid><orcidid>https://orcid.org/0000-0003-2172-2881</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1944-8244 |
ispartof | ACS applied materials & interfaces, 2024-12, Vol.16 (51), p.70575-70586 |
issn | 1944-8244 1944-8252 1944-8252 |
language | eng |
recordid | cdi_proquest_miscellaneous_3146846567 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | Energy, Environmental, and Catalysis Applications |
title | Harnessing Ammonia as a Hydrogen Carrier for Integrated CO2 Capture and Reverse Water–Gas Shift |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T16%3A01%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_acs_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Harnessing%20Ammonia%20as%20a%20Hydrogen%20Carrier%20for%20Integrated%20CO2%20Capture%20and%20Reverse%20Water%E2%80%93Gas%20Shift&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Jo,%20Seongbin&rft.date=2024-12-25&rft.volume=16&rft.issue=51&rft.spage=70575&rft.epage=70586&rft.pages=70575-70586&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.4c16632&rft_dat=%3Cproquest_acs_j%3E3146846567%3C/proquest_acs_j%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a153t-fa71891f6bd6325ee76cef4d95052d02eff4cf84607c9a42f3e5205917b678c43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3146846567&rft_id=info:pmid/&rfr_iscdi=true |