Loading…

Implication of GPRASP2 in the Proliferation and Hair Cell-Forming of Cochlear Supporting Cells

G protein-coupled receptor-associated sorting protein 2 (GPRASP2) has been identified as the causative gene for X-linked recessive syndromic hearing loss (SHL) in our previous study. However, the role of GPRASP2 in auditory function remains unclear. The present study demonstrated that Gprasp2 overex...

Full description

Saved in:
Bibliographic Details
Published in:Cell proliferation 2024-12, p.e13792
Main Authors: Cai, Jing, Huang, Kun, Li, Wenrui, Wang, Tianming, Yue, Shen, Chen, Zhibin, Xing, Guangqian, Wei, Qinjun, Yao, Jun, Cao, Xin
Format: Article
Language:English
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:G protein-coupled receptor-associated sorting protein 2 (GPRASP2) has been identified as the causative gene for X-linked recessive syndromic hearing loss (SHL) in our previous study. However, the role of GPRASP2 in auditory function remains unclear. The present study demonstrated that Gprasp2 overexpression in mouse organoids promoted the proliferation of supporting cells (SCs), which was mainly mediated by the Hedgehog signalling pathway. Meanwhile, GPRASP2 promoted hair cell (HC) formation from SCs via β-catenin signalling. In addition, GPRASP2 deficiency resulted in increased lysosomal degradation of SMO protein, leading to decreased expression of β-catenin and the Hedgehog pathway transcription factor GLI1. In neomycin-treated mouse cochlear explant, the smoothened agonist (SAG) recured the HC loss and further facilitated AAV-ie-Gprasp2 to promote the proliferation of SCs and formation of HCs. Our results suggested that GPRASP2 could be a potential candidate for gene therapy in the regeneration of HCs.
ISSN:0960-7722
1365-2184
1365-2184
DOI:10.1111/cpr.13792