Loading…

Order-Disorder Balance in Silk-Elastin-like Polypeptides Determines Their Self-Assembly into Hydrogel Networks

The biofabrication of recombinant structural proteins with a range of mechanical or structural features usually relies on the generation of protein libraries displaying variations in terms of amino acid composition, block structure, molecular weight, or physical/chemical cross-linking sites. This ap...

Full description

Saved in:
Bibliographic Details
Published in:ACS applied materials & interfaces 2024-12
Main Authors: López Barreiro, Diego, Houben, Klaartje, Schouten, Olaf, Koenderink, Gijsje H, Thies, Jens C, Sagt, Cees M J
Format: Article
Language:English
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title ACS applied materials & interfaces
container_volume
creator López Barreiro, Diego
Houben, Klaartje
Schouten, Olaf
Koenderink, Gijsje H
Thies, Jens C
Sagt, Cees M J
description The biofabrication of recombinant structural proteins with a range of mechanical or structural features usually relies on the generation of protein libraries displaying variations in terms of amino acid composition, block structure, molecular weight, or physical/chemical cross-linking sites. This approach, while highly successful in generating a wealth of knowledge regarding the links between design features and material properties, has some inherent limitations related to its low throughput. This slows down the pace of the development of recombinant structural proteins. Here, we propose an approach to tune the viscoelastic properties of temperature-responsive hydrogels made of silk-elastin-like polypeptides (SELPs) without modifying their sequence. To do so, we subject purified SELPs to two different postprocessing methods─water annealing or EtOH annealing─that alter the topology of highly disordered SELP networks via the formation of ordered intermolecular β-sheet physical cross-links. Combining different analytical techniques, we connect the order/disorder balance in SELPs with their gelling behavior. Furthermore, we show that introducing a functional block (in this case, a biomineralizing peptide) in the sequence of SELPs can disrupt its self-assembly and that such disruption can only be overcome by EtOH annealing. Our results suggest that postprocessing of as-purified SELPs might be a simple approach to tune the self-assembly of SELPs into biomaterials with bespoke viscoelastic properties beyond the traditional approach of developing SELP libraries via genetic engineering.
doi_str_mv 10.1021/acsami.4c17903
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_3146912646</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3146912646</sourcerecordid><originalsourceid>FETCH-LOGICAL-p563-327b0f8eb56b3f42c4f37355a1fb043bf53bedf2df1da671313814ce01767fc43</originalsourceid><addsrcrecordid>eNpNkDtPwzAYRS0EoqWwMqKMLC5-Jx1LWx5SRZHaPbKTz2DqPLBTofx7gigS0z3D1ZHuReiakikljN7pIurKTUVB0xnhJ2hMZ0LgjEl2-o9H6CLGD0IUZ0SeoxGfqYxKyseo3oQSAl662PxAcq-9rgtIXJ1snd_jldexczX2bg_Ja-P7FtrOlRCTJXQQKlcPuHsHF5IteIvnMUJlfD8IuiZ56svQvIFPXqD7asI-XqIzq32Eq2NO0O5htVs84fXm8XkxX-NWKo45Sw2xGRipDLeCFcLylEupqTVEcGMlN1BaVlpaapVSTnlGRQGEpiq1heATdPurbUPzeYDY5ZWLBfhhGzSHmHMq1IwyJdRQvTlWD6aCMm-Dq3To87-L-DcdlWpM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3146912646</pqid></control><display><type>article</type><title>Order-Disorder Balance in Silk-Elastin-like Polypeptides Determines Their Self-Assembly into Hydrogel Networks</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>López Barreiro, Diego ; Houben, Klaartje ; Schouten, Olaf ; Koenderink, Gijsje H ; Thies, Jens C ; Sagt, Cees M J</creator><creatorcontrib>López Barreiro, Diego ; Houben, Klaartje ; Schouten, Olaf ; Koenderink, Gijsje H ; Thies, Jens C ; Sagt, Cees M J</creatorcontrib><description>The biofabrication of recombinant structural proteins with a range of mechanical or structural features usually relies on the generation of protein libraries displaying variations in terms of amino acid composition, block structure, molecular weight, or physical/chemical cross-linking sites. This approach, while highly successful in generating a wealth of knowledge regarding the links between design features and material properties, has some inherent limitations related to its low throughput. This slows down the pace of the development of recombinant structural proteins. Here, we propose an approach to tune the viscoelastic properties of temperature-responsive hydrogels made of silk-elastin-like polypeptides (SELPs) without modifying their sequence. To do so, we subject purified SELPs to two different postprocessing methods─water annealing or EtOH annealing─that alter the topology of highly disordered SELP networks via the formation of ordered intermolecular β-sheet physical cross-links. Combining different analytical techniques, we connect the order/disorder balance in SELPs with their gelling behavior. Furthermore, we show that introducing a functional block (in this case, a biomineralizing peptide) in the sequence of SELPs can disrupt its self-assembly and that such disruption can only be overcome by EtOH annealing. Our results suggest that postprocessing of as-purified SELPs might be a simple approach to tune the self-assembly of SELPs into biomaterials with bespoke viscoelastic properties beyond the traditional approach of developing SELP libraries via genetic engineering.</description><identifier>ISSN: 1944-8252</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.4c17903</identifier><identifier>PMID: 39681513</identifier><language>eng</language><publisher>United States</publisher><ispartof>ACS applied materials &amp; interfaces, 2024-12</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-9346-655X ; 0000-0002-6221-2987 ; 0000-0002-7823-8807</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39681513$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>López Barreiro, Diego</creatorcontrib><creatorcontrib>Houben, Klaartje</creatorcontrib><creatorcontrib>Schouten, Olaf</creatorcontrib><creatorcontrib>Koenderink, Gijsje H</creatorcontrib><creatorcontrib>Thies, Jens C</creatorcontrib><creatorcontrib>Sagt, Cees M J</creatorcontrib><title>Order-Disorder Balance in Silk-Elastin-like Polypeptides Determines Their Self-Assembly into Hydrogel Networks</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl Mater Interfaces</addtitle><description>The biofabrication of recombinant structural proteins with a range of mechanical or structural features usually relies on the generation of protein libraries displaying variations in terms of amino acid composition, block structure, molecular weight, or physical/chemical cross-linking sites. This approach, while highly successful in generating a wealth of knowledge regarding the links between design features and material properties, has some inherent limitations related to its low throughput. This slows down the pace of the development of recombinant structural proteins. Here, we propose an approach to tune the viscoelastic properties of temperature-responsive hydrogels made of silk-elastin-like polypeptides (SELPs) without modifying their sequence. To do so, we subject purified SELPs to two different postprocessing methods─water annealing or EtOH annealing─that alter the topology of highly disordered SELP networks via the formation of ordered intermolecular β-sheet physical cross-links. Combining different analytical techniques, we connect the order/disorder balance in SELPs with their gelling behavior. Furthermore, we show that introducing a functional block (in this case, a biomineralizing peptide) in the sequence of SELPs can disrupt its self-assembly and that such disruption can only be overcome by EtOH annealing. Our results suggest that postprocessing of as-purified SELPs might be a simple approach to tune the self-assembly of SELPs into biomaterials with bespoke viscoelastic properties beyond the traditional approach of developing SELP libraries via genetic engineering.</description><issn>1944-8252</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkDtPwzAYRS0EoqWwMqKMLC5-Jx1LWx5SRZHaPbKTz2DqPLBTofx7gigS0z3D1ZHuReiakikljN7pIurKTUVB0xnhJ2hMZ0LgjEl2-o9H6CLGD0IUZ0SeoxGfqYxKyseo3oQSAl662PxAcq-9rgtIXJ1snd_jldexczX2bg_Ja-P7FtrOlRCTJXQQKlcPuHsHF5IteIvnMUJlfD8IuiZ56svQvIFPXqD7asI-XqIzq32Eq2NO0O5htVs84fXm8XkxX-NWKo45Sw2xGRipDLeCFcLylEupqTVEcGMlN1BaVlpaapVSTnlGRQGEpiq1heATdPurbUPzeYDY5ZWLBfhhGzSHmHMq1IwyJdRQvTlWD6aCMm-Dq3To87-L-DcdlWpM</recordid><startdate>20241216</startdate><enddate>20241216</enddate><creator>López Barreiro, Diego</creator><creator>Houben, Klaartje</creator><creator>Schouten, Olaf</creator><creator>Koenderink, Gijsje H</creator><creator>Thies, Jens C</creator><creator>Sagt, Cees M J</creator><scope>NPM</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9346-655X</orcidid><orcidid>https://orcid.org/0000-0002-6221-2987</orcidid><orcidid>https://orcid.org/0000-0002-7823-8807</orcidid></search><sort><creationdate>20241216</creationdate><title>Order-Disorder Balance in Silk-Elastin-like Polypeptides Determines Their Self-Assembly into Hydrogel Networks</title><author>López Barreiro, Diego ; Houben, Klaartje ; Schouten, Olaf ; Koenderink, Gijsje H ; Thies, Jens C ; Sagt, Cees M J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p563-327b0f8eb56b3f42c4f37355a1fb043bf53bedf2df1da671313814ce01767fc43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>López Barreiro, Diego</creatorcontrib><creatorcontrib>Houben, Klaartje</creatorcontrib><creatorcontrib>Schouten, Olaf</creatorcontrib><creatorcontrib>Koenderink, Gijsje H</creatorcontrib><creatorcontrib>Thies, Jens C</creatorcontrib><creatorcontrib>Sagt, Cees M J</creatorcontrib><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>López Barreiro, Diego</au><au>Houben, Klaartje</au><au>Schouten, Olaf</au><au>Koenderink, Gijsje H</au><au>Thies, Jens C</au><au>Sagt, Cees M J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Order-Disorder Balance in Silk-Elastin-like Polypeptides Determines Their Self-Assembly into Hydrogel Networks</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl Mater Interfaces</addtitle><date>2024-12-16</date><risdate>2024</risdate><issn>1944-8252</issn><eissn>1944-8252</eissn><abstract>The biofabrication of recombinant structural proteins with a range of mechanical or structural features usually relies on the generation of protein libraries displaying variations in terms of amino acid composition, block structure, molecular weight, or physical/chemical cross-linking sites. This approach, while highly successful in generating a wealth of knowledge regarding the links between design features and material properties, has some inherent limitations related to its low throughput. This slows down the pace of the development of recombinant structural proteins. Here, we propose an approach to tune the viscoelastic properties of temperature-responsive hydrogels made of silk-elastin-like polypeptides (SELPs) without modifying their sequence. To do so, we subject purified SELPs to two different postprocessing methods─water annealing or EtOH annealing─that alter the topology of highly disordered SELP networks via the formation of ordered intermolecular β-sheet physical cross-links. Combining different analytical techniques, we connect the order/disorder balance in SELPs with their gelling behavior. Furthermore, we show that introducing a functional block (in this case, a biomineralizing peptide) in the sequence of SELPs can disrupt its self-assembly and that such disruption can only be overcome by EtOH annealing. Our results suggest that postprocessing of as-purified SELPs might be a simple approach to tune the self-assembly of SELPs into biomaterials with bespoke viscoelastic properties beyond the traditional approach of developing SELP libraries via genetic engineering.</abstract><cop>United States</cop><pmid>39681513</pmid><doi>10.1021/acsami.4c17903</doi><orcidid>https://orcid.org/0000-0002-9346-655X</orcidid><orcidid>https://orcid.org/0000-0002-6221-2987</orcidid><orcidid>https://orcid.org/0000-0002-7823-8807</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8252
ispartof ACS applied materials & interfaces, 2024-12
issn 1944-8252
1944-8252
language eng
recordid cdi_proquest_miscellaneous_3146912646
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
title Order-Disorder Balance in Silk-Elastin-like Polypeptides Determines Their Self-Assembly into Hydrogel Networks
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T03%3A45%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Order-Disorder%20Balance%20in%20Silk-Elastin-like%20Polypeptides%20Determines%20Their%20Self-Assembly%20into%20Hydrogel%20Networks&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=L%C3%B3pez%20Barreiro,%20Diego&rft.date=2024-12-16&rft.issn=1944-8252&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.4c17903&rft_dat=%3Cproquest_pubme%3E3146912646%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p563-327b0f8eb56b3f42c4f37355a1fb043bf53bedf2df1da671313814ce01767fc43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3146912646&rft_id=info:pmid/39681513&rfr_iscdi=true