Loading…

Ganglioside GM1 Alleviates Propofol-Induced Pyroptosis in the Hippocampus of Developing Rats via the PI3K/AKT/NF-κB Signaling Cascade

In pediatric and intensive care units, propofol is widely used for general anesthesia and sedation procedures as a short-acting anesthetic. Multiple studies have revealed that propofol causes hippocampal injury and cognitive dysfunction in developing animals. As is known, GM1, a type of ganglioside,...

Full description

Saved in:
Bibliographic Details
Published in:International journal of molecular sciences 2024-12, Vol.25 (23), p.12662
Main Authors: Zhang, Zhiheng, Du, Shan, Chen, Xinzhang, Qiu, Di, Li, Siyao, Han, Lin, Bai, Hui, Gao, Ruifeng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In pediatric and intensive care units, propofol is widely used for general anesthesia and sedation procedures as a short-acting anesthetic. Multiple studies have revealed that propofol causes hippocampal injury and cognitive dysfunction in developing animals. As is known, GM1, a type of ganglioside, plays a crucial role in promoting nervous system development. Consequently, this study explored whether GM1 mitigated neurological injury caused by propofol during developmental stages and investigated its underlying mechanisms. Seven-day-old SD rats or PC12 cells were used in this study for histopathological analyses, a Morris water maze test, a lactate dehydrogenase release assay, Western blotting, and an ELISA. Furthermore, LY294002 was employed to explore the potential neuroprotective effect of GM1 via the PI3K/AKT signaling cascade. The results indicated that GM1 exerted a protective effect against hippocampal morphological damage and pyroptosis as well as behavioral abnormalities following propofol exposure by increasing p-PI3K and p-AKT expression while decreasing p-p65 expression in developing rats. Nevertheless, the inhibitor LY294002, which targets the PI3K/AKT cascade, attenuated the beneficial effects of GM1. Our study provides evidence that GM1 confers neuroprotection and attenuates propofol-induced developmental neurotoxicity, potentially involving the PI3K/AKT/NF-κB signaling cascade.
ISSN:1422-0067
1661-6596
1422-0067
DOI:10.3390/ijms252312662