Loading…

A Study on the Measurement Method of Biot Coefficient for Concrete Based on Experimental Approaches

Concrete stress is a key factor influencing the operational safety of concrete dams, and understanding the true distribution and variation of stress is a major research focus in the field of dam engineering. In the heel region of the dam, internal voids in the concrete may allow external water infil...

Full description

Saved in:
Bibliographic Details
Published in:Materials 2024-11, Vol.17 (23), p.5868
Main Authors: Hu, Yintao, Ru, Nan, Zhou, Qiujing, Cheng, Heng, Zhang, Guoxin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Concrete stress is a key factor influencing the operational safety of concrete dams, and understanding the true distribution and variation of stress is a major research focus in the field of dam engineering. In the heel region of the dam, internal voids in the concrete may allow external water infiltration under high hydraulic head, leading to changes in the concrete's elastic modulus and Biot coefficient. These changes, in turn, affect the effective stress experienced by the concrete. Consequently, the measured stress in the heel and toe regions may differ from conventional understanding and standard calculation methods for dam stresses. This is particularly evident in the following aspects: after water impoundment, compressive stress in the dam heel is higher than in the dam toe, with the heel stress exceeding the calculated value by a significant margin, and the variation in stress during the impoundment process being smaller than the calculated value. To address these issues, this paper proposes a theoretical method for measuring the Biot coefficient of concrete through experimental testing and innovatively develops the corresponding experimental equipment. This equipment can accurately simulate the conditions of the dam under different water depths (confining pressures) and measure the deformation of concrete caused by changes in water depth. Based on this equipment, tests were conducted on the elastic modulus and Biot coefficient of dry and saturated concrete specimens under different confining pressures. The Voigt-Reuss-Hill mixed average modulus formula was applied to calculate the elastic modulus of the concrete matrix, exploring the influence of pore water on the mechanical properties of the concrete. The results indicate that the pore water inside the concrete increases its equivalent elastic modulus during the testing process. In numerical simulations of the dam, this increased modulus due to pore water is often overlooked, leading to an underestimation of the results. This partially explains why the measured compressive stress in the dam heel consistently exceeds the calculated values. According to the Biot coefficient calculation theory proposed in this paper, the Biot coefficient of concrete varies with its water content. The Biot coefficient is lower in specimens with high water content compared to those with low water content. Using the Voigt-Reuss-Hill mixed average modulus formula, the elastic modulus of the concrete matrix obtained from
ISSN:1996-1944
1996-1944
DOI:10.3390/ma17235868