Loading…

FedMEKT: Distillation-based embedding knowledge transfer for multimodal federated learning

Federated learning (FL) enables a decentralized machine learning paradigm for multiple clients to collaboratively train a generalized global model without sharing their private data. Most existing works have focused on designing FL systems for unimodal data, limiting their potential to exploit valua...

Full description

Saved in:
Bibliographic Details
Published in:Neural networks 2025-03, Vol.183, p.107017, Article 107017
Main Authors: Le, Huy Q., Nguyen, Minh N.H., Thwal, Chu Myaet, Qiao, Yu, Zhang, Chaoning, Hong, Choong Seon
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c2027-4b27ed9a069f67aabc72ea910200298ac526a2f7860c5815d268ee2e8c60277d3
container_end_page
container_issue
container_start_page 107017
container_title Neural networks
container_volume 183
creator Le, Huy Q.
Nguyen, Minh N.H.
Thwal, Chu Myaet
Qiao, Yu
Zhang, Chaoning
Hong, Choong Seon
description Federated learning (FL) enables a decentralized machine learning paradigm for multiple clients to collaboratively train a generalized global model without sharing their private data. Most existing works have focused on designing FL systems for unimodal data, limiting their potential to exploit valuable multimodal data for future personalized applications. Moreover, the majority of FL approaches still rely on labeled data at the client side, which is often constrained by the inability of users to self-annotate their data in real-world applications. In light of these limitations, we propose a novel multimodal FL framework, namely FedMEKT, based on a semi-supervised learning approach to leverage representations from different modalities. To address the challenges of modality discrepancy and labeled data constraints in existing FL systems, our proposed FedMEKT framework comprises local multimodal autoencoder learning, generalized multimodal autoencoder construction, and generalized classifier learning. Bringing this concept into the proposed framework, we develop a distillation-based multimodal embedding knowledge transfer mechanism which allows the server and clients to exchange joint multimodal embedding knowledge extracted from a multimodal proxy dataset. Specifically, our FedMEKT iteratively updates the generalized global encoders with joint multimodal embedding knowledge from participating clients through upstream and downstream multimodal embedding knowledge transfer for local learning. Through extensive experiments on four multimodal datasets, we demonstrate that FedMEKT not only achieves superior global encoder performance in linear evaluation but also guarantees user privacy for personal data and model parameters while demanding less communication cost than other baselines.
doi_str_mv 10.1016/j.neunet.2024.107017
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3146948593</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0893608024009468</els_id><sourcerecordid>3146948593</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2027-4b27ed9a069f67aabc72ea910200298ac526a2f7860c5815d268ee2e8c60277d3</originalsourceid><addsrcrecordid>eNp9kMtKxDAUhoMoOl7eQKRLNx2TtM3FhSDjFRU348ZNSJNTydimmrSKb2-GqktXBw7_dy4fQocEzwkm7GQ19zB6GOYU0zK1OCZ8A82I4DKnXNBNNMNCFjnDAu-g3RhXGGMmymIb7RSSCVlxOkPPV2AfLu-Wp9mFi4NrWz243ue1jmAz6Gqw1vmX7NX3ny3YF8iGoH1sIGRNH7JubAfX9Va3WQMWgh4S1YIOPkH7aKvRbYSDn7qHnq4ul4ub_P7x-nZxfp-bdDnPy5pysFJjJhvGta4Np6AlwRRjKoU2FWWaNlwwbCpBKkuZAKAgDEs4t8UeOp7mvoX-fYQ4qM5FA-kVD_0YVUFKJktRySJFyylqQh9jgEa9Bdfp8KUIVmuraqUmq2ptVU1WE3b0s2GsO7B_0K_GFDibApD-_HAQVDQOvAHrAphB2d79v-EbTdSKiA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3146948593</pqid></control><display><type>article</type><title>FedMEKT: Distillation-based embedding knowledge transfer for multimodal federated learning</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Le, Huy Q. ; Nguyen, Minh N.H. ; Thwal, Chu Myaet ; Qiao, Yu ; Zhang, Chaoning ; Hong, Choong Seon</creator><creatorcontrib>Le, Huy Q. ; Nguyen, Minh N.H. ; Thwal, Chu Myaet ; Qiao, Yu ; Zhang, Chaoning ; Hong, Choong Seon</creatorcontrib><description>Federated learning (FL) enables a decentralized machine learning paradigm for multiple clients to collaboratively train a generalized global model without sharing their private data. Most existing works have focused on designing FL systems for unimodal data, limiting their potential to exploit valuable multimodal data for future personalized applications. Moreover, the majority of FL approaches still rely on labeled data at the client side, which is often constrained by the inability of users to self-annotate their data in real-world applications. In light of these limitations, we propose a novel multimodal FL framework, namely FedMEKT, based on a semi-supervised learning approach to leverage representations from different modalities. To address the challenges of modality discrepancy and labeled data constraints in existing FL systems, our proposed FedMEKT framework comprises local multimodal autoencoder learning, generalized multimodal autoencoder construction, and generalized classifier learning. Bringing this concept into the proposed framework, we develop a distillation-based multimodal embedding knowledge transfer mechanism which allows the server and clients to exchange joint multimodal embedding knowledge extracted from a multimodal proxy dataset. Specifically, our FedMEKT iteratively updates the generalized global encoders with joint multimodal embedding knowledge from participating clients through upstream and downstream multimodal embedding knowledge transfer for local learning. Through extensive experiments on four multimodal datasets, we demonstrate that FedMEKT not only achieves superior global encoder performance in linear evaluation but also guarantees user privacy for personal data and model parameters while demanding less communication cost than other baselines.</description><identifier>ISSN: 0893-6080</identifier><identifier>ISSN: 1879-2782</identifier><identifier>EISSN: 1879-2782</identifier><identifier>DOI: 10.1016/j.neunet.2024.107017</identifier><identifier>PMID: 39689572</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Federated learning ; Multimodal learning ; Representation learning ; Semi-supervised learning</subject><ispartof>Neural networks, 2025-03, Vol.183, p.107017, Article 107017</ispartof><rights>2024 Elsevier Ltd</rights><rights>Copyright © 2024 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2027-4b27ed9a069f67aabc72ea910200298ac526a2f7860c5815d268ee2e8c60277d3</cites><orcidid>0000-0003-4045-8473 ; 0000-0002-5708-6971 ; 0009-0007-8342-7614 ; 0000-0003-3484-7333</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39689572$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Le, Huy Q.</creatorcontrib><creatorcontrib>Nguyen, Minh N.H.</creatorcontrib><creatorcontrib>Thwal, Chu Myaet</creatorcontrib><creatorcontrib>Qiao, Yu</creatorcontrib><creatorcontrib>Zhang, Chaoning</creatorcontrib><creatorcontrib>Hong, Choong Seon</creatorcontrib><title>FedMEKT: Distillation-based embedding knowledge transfer for multimodal federated learning</title><title>Neural networks</title><addtitle>Neural Netw</addtitle><description>Federated learning (FL) enables a decentralized machine learning paradigm for multiple clients to collaboratively train a generalized global model without sharing their private data. Most existing works have focused on designing FL systems for unimodal data, limiting their potential to exploit valuable multimodal data for future personalized applications. Moreover, the majority of FL approaches still rely on labeled data at the client side, which is often constrained by the inability of users to self-annotate their data in real-world applications. In light of these limitations, we propose a novel multimodal FL framework, namely FedMEKT, based on a semi-supervised learning approach to leverage representations from different modalities. To address the challenges of modality discrepancy and labeled data constraints in existing FL systems, our proposed FedMEKT framework comprises local multimodal autoencoder learning, generalized multimodal autoencoder construction, and generalized classifier learning. Bringing this concept into the proposed framework, we develop a distillation-based multimodal embedding knowledge transfer mechanism which allows the server and clients to exchange joint multimodal embedding knowledge extracted from a multimodal proxy dataset. Specifically, our FedMEKT iteratively updates the generalized global encoders with joint multimodal embedding knowledge from participating clients through upstream and downstream multimodal embedding knowledge transfer for local learning. Through extensive experiments on four multimodal datasets, we demonstrate that FedMEKT not only achieves superior global encoder performance in linear evaluation but also guarantees user privacy for personal data and model parameters while demanding less communication cost than other baselines.</description><subject>Federated learning</subject><subject>Multimodal learning</subject><subject>Representation learning</subject><subject>Semi-supervised learning</subject><issn>0893-6080</issn><issn>1879-2782</issn><issn>1879-2782</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKxDAUhoMoOl7eQKRLNx2TtM3FhSDjFRU348ZNSJNTydimmrSKb2-GqktXBw7_dy4fQocEzwkm7GQ19zB6GOYU0zK1OCZ8A82I4DKnXNBNNMNCFjnDAu-g3RhXGGMmymIb7RSSCVlxOkPPV2AfLu-Wp9mFi4NrWz243ue1jmAz6Gqw1vmX7NX3ny3YF8iGoH1sIGRNH7JubAfX9Va3WQMWgh4S1YIOPkH7aKvRbYSDn7qHnq4ul4ub_P7x-nZxfp-bdDnPy5pysFJjJhvGta4Np6AlwRRjKoU2FWWaNlwwbCpBKkuZAKAgDEs4t8UeOp7mvoX-fYQ4qM5FA-kVD_0YVUFKJktRySJFyylqQh9jgEa9Bdfp8KUIVmuraqUmq2ptVU1WE3b0s2GsO7B_0K_GFDibApD-_HAQVDQOvAHrAphB2d79v-EbTdSKiA</recordid><startdate>202503</startdate><enddate>202503</enddate><creator>Le, Huy Q.</creator><creator>Nguyen, Minh N.H.</creator><creator>Thwal, Chu Myaet</creator><creator>Qiao, Yu</creator><creator>Zhang, Chaoning</creator><creator>Hong, Choong Seon</creator><general>Elsevier Ltd</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4045-8473</orcidid><orcidid>https://orcid.org/0000-0002-5708-6971</orcidid><orcidid>https://orcid.org/0009-0007-8342-7614</orcidid><orcidid>https://orcid.org/0000-0003-3484-7333</orcidid></search><sort><creationdate>202503</creationdate><title>FedMEKT: Distillation-based embedding knowledge transfer for multimodal federated learning</title><author>Le, Huy Q. ; Nguyen, Minh N.H. ; Thwal, Chu Myaet ; Qiao, Yu ; Zhang, Chaoning ; Hong, Choong Seon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2027-4b27ed9a069f67aabc72ea910200298ac526a2f7860c5815d268ee2e8c60277d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Federated learning</topic><topic>Multimodal learning</topic><topic>Representation learning</topic><topic>Semi-supervised learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Le, Huy Q.</creatorcontrib><creatorcontrib>Nguyen, Minh N.H.</creatorcontrib><creatorcontrib>Thwal, Chu Myaet</creatorcontrib><creatorcontrib>Qiao, Yu</creatorcontrib><creatorcontrib>Zhang, Chaoning</creatorcontrib><creatorcontrib>Hong, Choong Seon</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Neural networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Le, Huy Q.</au><au>Nguyen, Minh N.H.</au><au>Thwal, Chu Myaet</au><au>Qiao, Yu</au><au>Zhang, Chaoning</au><au>Hong, Choong Seon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>FedMEKT: Distillation-based embedding knowledge transfer for multimodal federated learning</atitle><jtitle>Neural networks</jtitle><addtitle>Neural Netw</addtitle><date>2025-03</date><risdate>2025</risdate><volume>183</volume><spage>107017</spage><pages>107017-</pages><artnum>107017</artnum><issn>0893-6080</issn><issn>1879-2782</issn><eissn>1879-2782</eissn><abstract>Federated learning (FL) enables a decentralized machine learning paradigm for multiple clients to collaboratively train a generalized global model without sharing their private data. Most existing works have focused on designing FL systems for unimodal data, limiting their potential to exploit valuable multimodal data for future personalized applications. Moreover, the majority of FL approaches still rely on labeled data at the client side, which is often constrained by the inability of users to self-annotate their data in real-world applications. In light of these limitations, we propose a novel multimodal FL framework, namely FedMEKT, based on a semi-supervised learning approach to leverage representations from different modalities. To address the challenges of modality discrepancy and labeled data constraints in existing FL systems, our proposed FedMEKT framework comprises local multimodal autoencoder learning, generalized multimodal autoencoder construction, and generalized classifier learning. Bringing this concept into the proposed framework, we develop a distillation-based multimodal embedding knowledge transfer mechanism which allows the server and clients to exchange joint multimodal embedding knowledge extracted from a multimodal proxy dataset. Specifically, our FedMEKT iteratively updates the generalized global encoders with joint multimodal embedding knowledge from participating clients through upstream and downstream multimodal embedding knowledge transfer for local learning. Through extensive experiments on four multimodal datasets, we demonstrate that FedMEKT not only achieves superior global encoder performance in linear evaluation but also guarantees user privacy for personal data and model parameters while demanding less communication cost than other baselines.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>39689572</pmid><doi>10.1016/j.neunet.2024.107017</doi><orcidid>https://orcid.org/0000-0003-4045-8473</orcidid><orcidid>https://orcid.org/0000-0002-5708-6971</orcidid><orcidid>https://orcid.org/0009-0007-8342-7614</orcidid><orcidid>https://orcid.org/0000-0003-3484-7333</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0893-6080
ispartof Neural networks, 2025-03, Vol.183, p.107017, Article 107017
issn 0893-6080
1879-2782
1879-2782
language eng
recordid cdi_proquest_miscellaneous_3146948593
source ScienceDirect Freedom Collection 2022-2024
subjects Federated learning
Multimodal learning
Representation learning
Semi-supervised learning
title FedMEKT: Distillation-based embedding knowledge transfer for multimodal federated learning
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T13%3A58%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=FedMEKT:%20Distillation-based%20embedding%20knowledge%20transfer%20for%20multimodal%20federated%20learning&rft.jtitle=Neural%20networks&rft.au=Le,%20Huy%20Q.&rft.date=2025-03&rft.volume=183&rft.spage=107017&rft.pages=107017-&rft.artnum=107017&rft.issn=0893-6080&rft.eissn=1879-2782&rft_id=info:doi/10.1016/j.neunet.2024.107017&rft_dat=%3Cproquest_cross%3E3146948593%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2027-4b27ed9a069f67aabc72ea910200298ac526a2f7860c5815d268ee2e8c60277d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3146948593&rft_id=info:pmid/39689572&rfr_iscdi=true