Loading…
FedMEKT: Distillation-based embedding knowledge transfer for multimodal federated learning
Federated learning (FL) enables a decentralized machine learning paradigm for multiple clients to collaboratively train a generalized global model without sharing their private data. Most existing works have focused on designing FL systems for unimodal data, limiting their potential to exploit valua...
Saved in:
Published in: | Neural networks 2025-03, Vol.183, p.107017, Article 107017 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c2027-4b27ed9a069f67aabc72ea910200298ac526a2f7860c5815d268ee2e8c60277d3 |
container_end_page | |
container_issue | |
container_start_page | 107017 |
container_title | Neural networks |
container_volume | 183 |
creator | Le, Huy Q. Nguyen, Minh N.H. Thwal, Chu Myaet Qiao, Yu Zhang, Chaoning Hong, Choong Seon |
description | Federated learning (FL) enables a decentralized machine learning paradigm for multiple clients to collaboratively train a generalized global model without sharing their private data. Most existing works have focused on designing FL systems for unimodal data, limiting their potential to exploit valuable multimodal data for future personalized applications. Moreover, the majority of FL approaches still rely on labeled data at the client side, which is often constrained by the inability of users to self-annotate their data in real-world applications. In light of these limitations, we propose a novel multimodal FL framework, namely FedMEKT, based on a semi-supervised learning approach to leverage representations from different modalities. To address the challenges of modality discrepancy and labeled data constraints in existing FL systems, our proposed FedMEKT framework comprises local multimodal autoencoder learning, generalized multimodal autoencoder construction, and generalized classifier learning. Bringing this concept into the proposed framework, we develop a distillation-based multimodal embedding knowledge transfer mechanism which allows the server and clients to exchange joint multimodal embedding knowledge extracted from a multimodal proxy dataset. Specifically, our FedMEKT iteratively updates the generalized global encoders with joint multimodal embedding knowledge from participating clients through upstream and downstream multimodal embedding knowledge transfer for local learning. Through extensive experiments on four multimodal datasets, we demonstrate that FedMEKT not only achieves superior global encoder performance in linear evaluation but also guarantees user privacy for personal data and model parameters while demanding less communication cost than other baselines. |
doi_str_mv | 10.1016/j.neunet.2024.107017 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3146948593</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0893608024009468</els_id><sourcerecordid>3146948593</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2027-4b27ed9a069f67aabc72ea910200298ac526a2f7860c5815d268ee2e8c60277d3</originalsourceid><addsrcrecordid>eNp9kMtKxDAUhoMoOl7eQKRLNx2TtM3FhSDjFRU348ZNSJNTydimmrSKb2-GqktXBw7_dy4fQocEzwkm7GQ19zB6GOYU0zK1OCZ8A82I4DKnXNBNNMNCFjnDAu-g3RhXGGMmymIb7RSSCVlxOkPPV2AfLu-Wp9mFi4NrWz243ue1jmAz6Gqw1vmX7NX3ny3YF8iGoH1sIGRNH7JubAfX9Va3WQMWgh4S1YIOPkH7aKvRbYSDn7qHnq4ul4ub_P7x-nZxfp-bdDnPy5pysFJjJhvGta4Np6AlwRRjKoU2FWWaNlwwbCpBKkuZAKAgDEs4t8UeOp7mvoX-fYQ4qM5FA-kVD_0YVUFKJktRySJFyylqQh9jgEa9Bdfp8KUIVmuraqUmq2ptVU1WE3b0s2GsO7B_0K_GFDibApD-_HAQVDQOvAHrAphB2d79v-EbTdSKiA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3146948593</pqid></control><display><type>article</type><title>FedMEKT: Distillation-based embedding knowledge transfer for multimodal federated learning</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Le, Huy Q. ; Nguyen, Minh N.H. ; Thwal, Chu Myaet ; Qiao, Yu ; Zhang, Chaoning ; Hong, Choong Seon</creator><creatorcontrib>Le, Huy Q. ; Nguyen, Minh N.H. ; Thwal, Chu Myaet ; Qiao, Yu ; Zhang, Chaoning ; Hong, Choong Seon</creatorcontrib><description>Federated learning (FL) enables a decentralized machine learning paradigm for multiple clients to collaboratively train a generalized global model without sharing their private data. Most existing works have focused on designing FL systems for unimodal data, limiting their potential to exploit valuable multimodal data for future personalized applications. Moreover, the majority of FL approaches still rely on labeled data at the client side, which is often constrained by the inability of users to self-annotate their data in real-world applications. In light of these limitations, we propose a novel multimodal FL framework, namely FedMEKT, based on a semi-supervised learning approach to leverage representations from different modalities. To address the challenges of modality discrepancy and labeled data constraints in existing FL systems, our proposed FedMEKT framework comprises local multimodal autoencoder learning, generalized multimodal autoencoder construction, and generalized classifier learning. Bringing this concept into the proposed framework, we develop a distillation-based multimodal embedding knowledge transfer mechanism which allows the server and clients to exchange joint multimodal embedding knowledge extracted from a multimodal proxy dataset. Specifically, our FedMEKT iteratively updates the generalized global encoders with joint multimodal embedding knowledge from participating clients through upstream and downstream multimodal embedding knowledge transfer for local learning. Through extensive experiments on four multimodal datasets, we demonstrate that FedMEKT not only achieves superior global encoder performance in linear evaluation but also guarantees user privacy for personal data and model parameters while demanding less communication cost than other baselines.</description><identifier>ISSN: 0893-6080</identifier><identifier>ISSN: 1879-2782</identifier><identifier>EISSN: 1879-2782</identifier><identifier>DOI: 10.1016/j.neunet.2024.107017</identifier><identifier>PMID: 39689572</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Federated learning ; Multimodal learning ; Representation learning ; Semi-supervised learning</subject><ispartof>Neural networks, 2025-03, Vol.183, p.107017, Article 107017</ispartof><rights>2024 Elsevier Ltd</rights><rights>Copyright © 2024 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2027-4b27ed9a069f67aabc72ea910200298ac526a2f7860c5815d268ee2e8c60277d3</cites><orcidid>0000-0003-4045-8473 ; 0000-0002-5708-6971 ; 0009-0007-8342-7614 ; 0000-0003-3484-7333</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39689572$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Le, Huy Q.</creatorcontrib><creatorcontrib>Nguyen, Minh N.H.</creatorcontrib><creatorcontrib>Thwal, Chu Myaet</creatorcontrib><creatorcontrib>Qiao, Yu</creatorcontrib><creatorcontrib>Zhang, Chaoning</creatorcontrib><creatorcontrib>Hong, Choong Seon</creatorcontrib><title>FedMEKT: Distillation-based embedding knowledge transfer for multimodal federated learning</title><title>Neural networks</title><addtitle>Neural Netw</addtitle><description>Federated learning (FL) enables a decentralized machine learning paradigm for multiple clients to collaboratively train a generalized global model without sharing their private data. Most existing works have focused on designing FL systems for unimodal data, limiting their potential to exploit valuable multimodal data for future personalized applications. Moreover, the majority of FL approaches still rely on labeled data at the client side, which is often constrained by the inability of users to self-annotate their data in real-world applications. In light of these limitations, we propose a novel multimodal FL framework, namely FedMEKT, based on a semi-supervised learning approach to leverage representations from different modalities. To address the challenges of modality discrepancy and labeled data constraints in existing FL systems, our proposed FedMEKT framework comprises local multimodal autoencoder learning, generalized multimodal autoencoder construction, and generalized classifier learning. Bringing this concept into the proposed framework, we develop a distillation-based multimodal embedding knowledge transfer mechanism which allows the server and clients to exchange joint multimodal embedding knowledge extracted from a multimodal proxy dataset. Specifically, our FedMEKT iteratively updates the generalized global encoders with joint multimodal embedding knowledge from participating clients through upstream and downstream multimodal embedding knowledge transfer for local learning. Through extensive experiments on four multimodal datasets, we demonstrate that FedMEKT not only achieves superior global encoder performance in linear evaluation but also guarantees user privacy for personal data and model parameters while demanding less communication cost than other baselines.</description><subject>Federated learning</subject><subject>Multimodal learning</subject><subject>Representation learning</subject><subject>Semi-supervised learning</subject><issn>0893-6080</issn><issn>1879-2782</issn><issn>1879-2782</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKxDAUhoMoOl7eQKRLNx2TtM3FhSDjFRU348ZNSJNTydimmrSKb2-GqktXBw7_dy4fQocEzwkm7GQ19zB6GOYU0zK1OCZ8A82I4DKnXNBNNMNCFjnDAu-g3RhXGGMmymIb7RSSCVlxOkPPV2AfLu-Wp9mFi4NrWz243ue1jmAz6Gqw1vmX7NX3ny3YF8iGoH1sIGRNH7JubAfX9Va3WQMWgh4S1YIOPkH7aKvRbYSDn7qHnq4ul4ub_P7x-nZxfp-bdDnPy5pysFJjJhvGta4Np6AlwRRjKoU2FWWaNlwwbCpBKkuZAKAgDEs4t8UeOp7mvoX-fYQ4qM5FA-kVD_0YVUFKJktRySJFyylqQh9jgEa9Bdfp8KUIVmuraqUmq2ptVU1WE3b0s2GsO7B_0K_GFDibApD-_HAQVDQOvAHrAphB2d79v-EbTdSKiA</recordid><startdate>202503</startdate><enddate>202503</enddate><creator>Le, Huy Q.</creator><creator>Nguyen, Minh N.H.</creator><creator>Thwal, Chu Myaet</creator><creator>Qiao, Yu</creator><creator>Zhang, Chaoning</creator><creator>Hong, Choong Seon</creator><general>Elsevier Ltd</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4045-8473</orcidid><orcidid>https://orcid.org/0000-0002-5708-6971</orcidid><orcidid>https://orcid.org/0009-0007-8342-7614</orcidid><orcidid>https://orcid.org/0000-0003-3484-7333</orcidid></search><sort><creationdate>202503</creationdate><title>FedMEKT: Distillation-based embedding knowledge transfer for multimodal federated learning</title><author>Le, Huy Q. ; Nguyen, Minh N.H. ; Thwal, Chu Myaet ; Qiao, Yu ; Zhang, Chaoning ; Hong, Choong Seon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2027-4b27ed9a069f67aabc72ea910200298ac526a2f7860c5815d268ee2e8c60277d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Federated learning</topic><topic>Multimodal learning</topic><topic>Representation learning</topic><topic>Semi-supervised learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Le, Huy Q.</creatorcontrib><creatorcontrib>Nguyen, Minh N.H.</creatorcontrib><creatorcontrib>Thwal, Chu Myaet</creatorcontrib><creatorcontrib>Qiao, Yu</creatorcontrib><creatorcontrib>Zhang, Chaoning</creatorcontrib><creatorcontrib>Hong, Choong Seon</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Neural networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Le, Huy Q.</au><au>Nguyen, Minh N.H.</au><au>Thwal, Chu Myaet</au><au>Qiao, Yu</au><au>Zhang, Chaoning</au><au>Hong, Choong Seon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>FedMEKT: Distillation-based embedding knowledge transfer for multimodal federated learning</atitle><jtitle>Neural networks</jtitle><addtitle>Neural Netw</addtitle><date>2025-03</date><risdate>2025</risdate><volume>183</volume><spage>107017</spage><pages>107017-</pages><artnum>107017</artnum><issn>0893-6080</issn><issn>1879-2782</issn><eissn>1879-2782</eissn><abstract>Federated learning (FL) enables a decentralized machine learning paradigm for multiple clients to collaboratively train a generalized global model without sharing their private data. Most existing works have focused on designing FL systems for unimodal data, limiting their potential to exploit valuable multimodal data for future personalized applications. Moreover, the majority of FL approaches still rely on labeled data at the client side, which is often constrained by the inability of users to self-annotate their data in real-world applications. In light of these limitations, we propose a novel multimodal FL framework, namely FedMEKT, based on a semi-supervised learning approach to leverage representations from different modalities. To address the challenges of modality discrepancy and labeled data constraints in existing FL systems, our proposed FedMEKT framework comprises local multimodal autoencoder learning, generalized multimodal autoencoder construction, and generalized classifier learning. Bringing this concept into the proposed framework, we develop a distillation-based multimodal embedding knowledge transfer mechanism which allows the server and clients to exchange joint multimodal embedding knowledge extracted from a multimodal proxy dataset. Specifically, our FedMEKT iteratively updates the generalized global encoders with joint multimodal embedding knowledge from participating clients through upstream and downstream multimodal embedding knowledge transfer for local learning. Through extensive experiments on four multimodal datasets, we demonstrate that FedMEKT not only achieves superior global encoder performance in linear evaluation but also guarantees user privacy for personal data and model parameters while demanding less communication cost than other baselines.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>39689572</pmid><doi>10.1016/j.neunet.2024.107017</doi><orcidid>https://orcid.org/0000-0003-4045-8473</orcidid><orcidid>https://orcid.org/0000-0002-5708-6971</orcidid><orcidid>https://orcid.org/0009-0007-8342-7614</orcidid><orcidid>https://orcid.org/0000-0003-3484-7333</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0893-6080 |
ispartof | Neural networks, 2025-03, Vol.183, p.107017, Article 107017 |
issn | 0893-6080 1879-2782 1879-2782 |
language | eng |
recordid | cdi_proquest_miscellaneous_3146948593 |
source | ScienceDirect Freedom Collection 2022-2024 |
subjects | Federated learning Multimodal learning Representation learning Semi-supervised learning |
title | FedMEKT: Distillation-based embedding knowledge transfer for multimodal federated learning |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T13%3A58%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=FedMEKT:%20Distillation-based%20embedding%20knowledge%20transfer%20for%20multimodal%20federated%20learning&rft.jtitle=Neural%20networks&rft.au=Le,%20Huy%20Q.&rft.date=2025-03&rft.volume=183&rft.spage=107017&rft.pages=107017-&rft.artnum=107017&rft.issn=0893-6080&rft.eissn=1879-2782&rft_id=info:doi/10.1016/j.neunet.2024.107017&rft_dat=%3Cproquest_cross%3E3146948593%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2027-4b27ed9a069f67aabc72ea910200298ac526a2f7860c5815d268ee2e8c60277d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3146948593&rft_id=info:pmid/39689572&rfr_iscdi=true |