Loading…

Foam-based antibacterial hydrogel composed of carboxymethyl cellulose/polyvinyl alcohol/cerium oxide nanoparticles for potential wound dressing

Foam-based wound dressing materials produced by dispersing gas phases in a polymeric material are soft, adapt to the body shape, and allow the absorption of wound exudate due to their porous structure. Most of these formulations are based on synthetic substances such as polyurethane. However, biopol...

Full description

Saved in:
Bibliographic Details
Published in:International journal of biological macromolecules 2024-12, Vol.291, p.138924, Article 138924
Main Authors: Orhan, Burcu, Karadeniz, Duygu, Kalaycıoğlu, Zeynep, Kaygusuz, Hakan, Torlak, Emrah, Erim, F. Bedia
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page 138924
container_title International journal of biological macromolecules
container_volume 291
creator Orhan, Burcu
Karadeniz, Duygu
Kalaycıoğlu, Zeynep
Kaygusuz, Hakan
Torlak, Emrah
Erim, F. Bedia
description Foam-based wound dressing materials produced by dispersing gas phases in a polymeric material are soft, adapt to the body shape, and allow the absorption of wound exudate due to their porous structure. Most of these formulations are based on synthetic substances such as polyurethane. However, biopolymers have entered the field as a new player thanks to their biocompatible and sustainable nature. Incorporating biopolymers in formulations is gaining interest in scientific literature, and we extend this approach by adding antibacterial cerium oxide nanoparticles to biopolymer formulation. We introduce a novel biopolymer composite of carboxymethyl cellulose (CMC), polyvinyl alcohol (PVA), and cerium oxide nanoparticles (CeO2 NPs), namely PVA-CMC@CeO2. This mixture was first foamed and then cross-linked with sodium tetraborate solution, followed by a freeze-thaw process. After the novel material's spectroscopic, structural, and morphological characterization, we investigated its swelling, drug-delivery, antibacterial, and biodegradability properties PVA-CMC@CeO2 dressing effectively inhibits Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) growth and delivers the antibiotic drug silver sulfadiazine for up to 6 h. The antibacterial properties, good swelling, and drug release profile of the blend material show promising potential in wound care applications. •Nanoceria (CeO2 NPs) was incorporated into PVA-CMC foam gels.•PVA-CMC@CeO2 foam gel has an average pore size of 127 μm.•CeO2 NPs increased the swelling ratio of the foam gel to %1057 within 1 h.•CeO2 NPs enhanced the antibacterial activity of the PVA-CMC foam gels.•PVA-CMC@CeO2 foam gel enables drug release nearly completely within 6 h.
doi_str_mv 10.1016/j.ijbiomac.2024.138924
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_3147977024</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0141813024097356</els_id><sourcerecordid>3147977024</sourcerecordid><originalsourceid>FETCH-LOGICAL-e1132-2292f76adc39ec76a8f34efcca76001218be531d5d85b6f8d00f5e4133e0b4623</originalsourceid><addsrcrecordid>eNo1UU1P3DAQtapWsFD-AvKxl-z6Ix_OrRUqBQmJC5wtx56wXjmZ1E4o-RX85Xq1cJrRvDfzZuYRcs3ZljNe7w5bf-g8DsZuBRPllkvVivIL2XDVtAVjTH4lG8ZLXigu2Tm5SOmQq3XF1Rk5l23DVG7YkPdbNEPRmQSOmnH2nbEzRG8C3a8u4gsEanGY8IhjT62JHb6tA8z7NSMQwhIytpswrK9-zDUTLO4x7GyesgwU37wDOpoRJxNnbwMk2mOkE86Q5bLOP1xGR12ElPz48p18601IcPURL8nz7e-nm7vi4fHP_c2vhwI4l6IQohV9UxtnZQs2J6qXJfTWmqZmjAuuOqgkd5VTVVf3yjHWV1ByKYF1ZS3kJflxmjtF_LtAmvXg0_EeMwIuSUteNm3T5Ndm6vUHdekGcHqKfjBx1Z9PzISfJwLkhV89RJ2sh9GC8xHsrB16zZk--qYP-tM3ffRNn3yT_wG5WpDS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3147977024</pqid></control><display><type>article</type><title>Foam-based antibacterial hydrogel composed of carboxymethyl cellulose/polyvinyl alcohol/cerium oxide nanoparticles for potential wound dressing</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Orhan, Burcu ; Karadeniz, Duygu ; Kalaycıoğlu, Zeynep ; Kaygusuz, Hakan ; Torlak, Emrah ; Erim, F. Bedia</creator><creatorcontrib>Orhan, Burcu ; Karadeniz, Duygu ; Kalaycıoğlu, Zeynep ; Kaygusuz, Hakan ; Torlak, Emrah ; Erim, F. Bedia</creatorcontrib><description>Foam-based wound dressing materials produced by dispersing gas phases in a polymeric material are soft, adapt to the body shape, and allow the absorption of wound exudate due to their porous structure. Most of these formulations are based on synthetic substances such as polyurethane. However, biopolymers have entered the field as a new player thanks to their biocompatible and sustainable nature. Incorporating biopolymers in formulations is gaining interest in scientific literature, and we extend this approach by adding antibacterial cerium oxide nanoparticles to biopolymer formulation. We introduce a novel biopolymer composite of carboxymethyl cellulose (CMC), polyvinyl alcohol (PVA), and cerium oxide nanoparticles (CeO2 NPs), namely PVA-CMC@CeO2. This mixture was first foamed and then cross-linked with sodium tetraborate solution, followed by a freeze-thaw process. After the novel material's spectroscopic, structural, and morphological characterization, we investigated its swelling, drug-delivery, antibacterial, and biodegradability properties PVA-CMC@CeO2 dressing effectively inhibits Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) growth and delivers the antibiotic drug silver sulfadiazine for up to 6 h. The antibacterial properties, good swelling, and drug release profile of the blend material show promising potential in wound care applications. •Nanoceria (CeO2 NPs) was incorporated into PVA-CMC foam gels.•PVA-CMC@CeO2 foam gel has an average pore size of 127 μm.•CeO2 NPs increased the swelling ratio of the foam gel to %1057 within 1 h.•CeO2 NPs enhanced the antibacterial activity of the PVA-CMC foam gels.•PVA-CMC@CeO2 foam gel enables drug release nearly completely within 6 h.</description><identifier>ISSN: 0141-8130</identifier><identifier>ISSN: 1879-0003</identifier><identifier>EISSN: 1879-0003</identifier><identifier>DOI: 10.1016/j.ijbiomac.2024.138924</identifier><identifier>PMID: 39708892</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Antibacterial ; Biopolymer ; Drug release ; Nanoceria ; Wound healing</subject><ispartof>International journal of biological macromolecules, 2024-12, Vol.291, p.138924, Article 138924</ispartof><rights>2024</rights><rights>Copyright © 2024 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-9406-6681</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39708892$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Orhan, Burcu</creatorcontrib><creatorcontrib>Karadeniz, Duygu</creatorcontrib><creatorcontrib>Kalaycıoğlu, Zeynep</creatorcontrib><creatorcontrib>Kaygusuz, Hakan</creatorcontrib><creatorcontrib>Torlak, Emrah</creatorcontrib><creatorcontrib>Erim, F. Bedia</creatorcontrib><title>Foam-based antibacterial hydrogel composed of carboxymethyl cellulose/polyvinyl alcohol/cerium oxide nanoparticles for potential wound dressing</title><title>International journal of biological macromolecules</title><addtitle>Int J Biol Macromol</addtitle><description>Foam-based wound dressing materials produced by dispersing gas phases in a polymeric material are soft, adapt to the body shape, and allow the absorption of wound exudate due to their porous structure. Most of these formulations are based on synthetic substances such as polyurethane. However, biopolymers have entered the field as a new player thanks to their biocompatible and sustainable nature. Incorporating biopolymers in formulations is gaining interest in scientific literature, and we extend this approach by adding antibacterial cerium oxide nanoparticles to biopolymer formulation. We introduce a novel biopolymer composite of carboxymethyl cellulose (CMC), polyvinyl alcohol (PVA), and cerium oxide nanoparticles (CeO2 NPs), namely PVA-CMC@CeO2. This mixture was first foamed and then cross-linked with sodium tetraborate solution, followed by a freeze-thaw process. After the novel material's spectroscopic, structural, and morphological characterization, we investigated its swelling, drug-delivery, antibacterial, and biodegradability properties PVA-CMC@CeO2 dressing effectively inhibits Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) growth and delivers the antibiotic drug silver sulfadiazine for up to 6 h. The antibacterial properties, good swelling, and drug release profile of the blend material show promising potential in wound care applications. •Nanoceria (CeO2 NPs) was incorporated into PVA-CMC foam gels.•PVA-CMC@CeO2 foam gel has an average pore size of 127 μm.•CeO2 NPs increased the swelling ratio of the foam gel to %1057 within 1 h.•CeO2 NPs enhanced the antibacterial activity of the PVA-CMC foam gels.•PVA-CMC@CeO2 foam gel enables drug release nearly completely within 6 h.</description><subject>Antibacterial</subject><subject>Biopolymer</subject><subject>Drug release</subject><subject>Nanoceria</subject><subject>Wound healing</subject><issn>0141-8130</issn><issn>1879-0003</issn><issn>1879-0003</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo1UU1P3DAQtapWsFD-AvKxl-z6Ix_OrRUqBQmJC5wtx56wXjmZ1E4o-RX85Xq1cJrRvDfzZuYRcs3ZljNe7w5bf-g8DsZuBRPllkvVivIL2XDVtAVjTH4lG8ZLXigu2Tm5SOmQq3XF1Rk5l23DVG7YkPdbNEPRmQSOmnH2nbEzRG8C3a8u4gsEanGY8IhjT62JHb6tA8z7NSMQwhIytpswrK9-zDUTLO4x7GyesgwU37wDOpoRJxNnbwMk2mOkE86Q5bLOP1xGR12ElPz48p18601IcPURL8nz7e-nm7vi4fHP_c2vhwI4l6IQohV9UxtnZQs2J6qXJfTWmqZmjAuuOqgkd5VTVVf3yjHWV1ByKYF1ZS3kJflxmjtF_LtAmvXg0_EeMwIuSUteNm3T5Ndm6vUHdekGcHqKfjBx1Z9PzISfJwLkhV89RJ2sh9GC8xHsrB16zZk--qYP-tM3ffRNn3yT_wG5WpDS</recordid><startdate>20241219</startdate><enddate>20241219</enddate><creator>Orhan, Burcu</creator><creator>Karadeniz, Duygu</creator><creator>Kalaycıoğlu, Zeynep</creator><creator>Kaygusuz, Hakan</creator><creator>Torlak, Emrah</creator><creator>Erim, F. Bedia</creator><general>Elsevier B.V</general><scope>NPM</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9406-6681</orcidid></search><sort><creationdate>20241219</creationdate><title>Foam-based antibacterial hydrogel composed of carboxymethyl cellulose/polyvinyl alcohol/cerium oxide nanoparticles for potential wound dressing</title><author>Orhan, Burcu ; Karadeniz, Duygu ; Kalaycıoğlu, Zeynep ; Kaygusuz, Hakan ; Torlak, Emrah ; Erim, F. Bedia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-e1132-2292f76adc39ec76a8f34efcca76001218be531d5d85b6f8d00f5e4133e0b4623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Antibacterial</topic><topic>Biopolymer</topic><topic>Drug release</topic><topic>Nanoceria</topic><topic>Wound healing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Orhan, Burcu</creatorcontrib><creatorcontrib>Karadeniz, Duygu</creatorcontrib><creatorcontrib>Kalaycıoğlu, Zeynep</creatorcontrib><creatorcontrib>Kaygusuz, Hakan</creatorcontrib><creatorcontrib>Torlak, Emrah</creatorcontrib><creatorcontrib>Erim, F. Bedia</creatorcontrib><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>International journal of biological macromolecules</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Orhan, Burcu</au><au>Karadeniz, Duygu</au><au>Kalaycıoğlu, Zeynep</au><au>Kaygusuz, Hakan</au><au>Torlak, Emrah</au><au>Erim, F. Bedia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Foam-based antibacterial hydrogel composed of carboxymethyl cellulose/polyvinyl alcohol/cerium oxide nanoparticles for potential wound dressing</atitle><jtitle>International journal of biological macromolecules</jtitle><addtitle>Int J Biol Macromol</addtitle><date>2024-12-19</date><risdate>2024</risdate><volume>291</volume><spage>138924</spage><pages>138924-</pages><artnum>138924</artnum><issn>0141-8130</issn><issn>1879-0003</issn><eissn>1879-0003</eissn><abstract>Foam-based wound dressing materials produced by dispersing gas phases in a polymeric material are soft, adapt to the body shape, and allow the absorption of wound exudate due to their porous structure. Most of these formulations are based on synthetic substances such as polyurethane. However, biopolymers have entered the field as a new player thanks to their biocompatible and sustainable nature. Incorporating biopolymers in formulations is gaining interest in scientific literature, and we extend this approach by adding antibacterial cerium oxide nanoparticles to biopolymer formulation. We introduce a novel biopolymer composite of carboxymethyl cellulose (CMC), polyvinyl alcohol (PVA), and cerium oxide nanoparticles (CeO2 NPs), namely PVA-CMC@CeO2. This mixture was first foamed and then cross-linked with sodium tetraborate solution, followed by a freeze-thaw process. After the novel material's spectroscopic, structural, and morphological characterization, we investigated its swelling, drug-delivery, antibacterial, and biodegradability properties PVA-CMC@CeO2 dressing effectively inhibits Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) growth and delivers the antibiotic drug silver sulfadiazine for up to 6 h. The antibacterial properties, good swelling, and drug release profile of the blend material show promising potential in wound care applications. •Nanoceria (CeO2 NPs) was incorporated into PVA-CMC foam gels.•PVA-CMC@CeO2 foam gel has an average pore size of 127 μm.•CeO2 NPs increased the swelling ratio of the foam gel to %1057 within 1 h.•CeO2 NPs enhanced the antibacterial activity of the PVA-CMC foam gels.•PVA-CMC@CeO2 foam gel enables drug release nearly completely within 6 h.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>39708892</pmid><doi>10.1016/j.ijbiomac.2024.138924</doi><orcidid>https://orcid.org/0000-0001-9406-6681</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0141-8130
ispartof International journal of biological macromolecules, 2024-12, Vol.291, p.138924, Article 138924
issn 0141-8130
1879-0003
1879-0003
language eng
recordid cdi_proquest_miscellaneous_3147977024
source ScienceDirect Freedom Collection 2022-2024
subjects Antibacterial
Biopolymer
Drug release
Nanoceria
Wound healing
title Foam-based antibacterial hydrogel composed of carboxymethyl cellulose/polyvinyl alcohol/cerium oxide nanoparticles for potential wound dressing
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T15%3A13%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Foam-based%20antibacterial%20hydrogel%20composed%20of%20carboxymethyl%20cellulose/polyvinyl%20alcohol/cerium%20oxide%20nanoparticles%20for%20potential%20wound%20dressing&rft.jtitle=International%20journal%20of%20biological%20macromolecules&rft.au=Orhan,%20Burcu&rft.date=2024-12-19&rft.volume=291&rft.spage=138924&rft.pages=138924-&rft.artnum=138924&rft.issn=0141-8130&rft.eissn=1879-0003&rft_id=info:doi/10.1016/j.ijbiomac.2024.138924&rft_dat=%3Cproquest_pubme%3E3147977024%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-e1132-2292f76adc39ec76a8f34efcca76001218be531d5d85b6f8d00f5e4133e0b4623%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3147977024&rft_id=info:pmid/39708892&rfr_iscdi=true