Loading…

Electrochemical Selective Nitrate Reduction: Pathways to Nitrogen and Ammonia Production

Nitrate (NO ) contamination from industrial, agricultural, and anthropogenic activities poses significant risks to human health and ecosystems. While traditional NO remediation methods are effective, they often generate secondary pollutants and incur high costs. Electrochemical NO reduction (ECNR) o...

Full description

Saved in:
Bibliographic Details
Published in:Chemical record 2024-12, p.e202400206
Main Authors: Islam, Md Monjorul, Abu Nayem, S M, Shah, Syed Shaheen, Islam, Md Zahidul, Aziz, Md Abdul, Saleh Ahammad, A J
Format: Article
Language:English
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page e202400206
container_title Chemical record
container_volume
creator Islam, Md Monjorul
Abu Nayem, S M
Shah, Syed Shaheen
Islam, Md Zahidul
Aziz, Md Abdul
Saleh Ahammad, A J
description Nitrate (NO ) contamination from industrial, agricultural, and anthropogenic activities poses significant risks to human health and ecosystems. While traditional NO remediation methods are effective, they often generate secondary pollutants and incur high costs. Electrochemical NO reduction (ECNR) offers a sustainable alternative, converting NO into environmentally benign nitrogen (N ) or valuable ammonia (NH ). This review explores recent advancements in selective ECNR pathways for NO -to-N and NO -to-NH conversion, focusing on mechanistic insights, electrocatalyst development, and optimization strategies. Key factors influencing ECNR performance, such as electrode materials, electrolyte composition, and hydrogen evolution inhibition, are discussed. Additionally, the review highlights the role of single-atom, bimetallic, and nanostructured catalysts in enhancing faradaic efficiency, total N removal, and selectivity, with particular attention to Pd-Cu systems. Strategies to address challenges like low selectivity and catalyst degradation are also explored. This review underscores the potential of ECNR as a viable alternative to the energy-intensive Haber-Bosch process for NH production, aligning with global sustainability goals. Finally, we identify research gaps and propose future directions for improving the efficiency, stability, and scalability of ECNR technologies.
doi_str_mv 10.1002/tcr.202400206
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_3148839086</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3148839086</sourcerecordid><originalsourceid>FETCH-LOGICAL-p564-43ef967f44ff05e3391418db88c32a39773b57380ec4d7bb71871d5e6978204c3</originalsourceid><addsrcrecordid>eNpNkL1PwzAUxC0EoqUwsiKPLCl27MQ2W1WVD6mCCjqwRY7zQoOSONgOqP89AYLEdKd7P51OD6FzSuaUkPgqGDePScwHT9IDNKVJLCOSKnr4z0_QifdvhFDKhThGE6YETQTjU_SyqsEEZ80OmsroGj_Dd1B9AH6ogtMB8BMU_ZDY9hpvdNh96r3Hwf6c7Su0WLcFXjSNbSuNN86O8Ck6KnXt4WzUGdrerLbLu2j9eHu_XKyjLkl5xBmUKhUl52VJEmBMUU5lkUtpWKyHmYLlw1BJwPBC5LmgUtAigVQJGRNu2Axd_tZ2zr734EPWVN5AXesWbO8zRrmUTBGZDujFiPZ5A0XWuarRbp_9PYN9AbFzYJI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3148839086</pqid></control><display><type>article</type><title>Electrochemical Selective Nitrate Reduction: Pathways to Nitrogen and Ammonia Production</title><source>Wiley</source><creator>Islam, Md Monjorul ; Abu Nayem, S M ; Shah, Syed Shaheen ; Islam, Md Zahidul ; Aziz, Md Abdul ; Saleh Ahammad, A J</creator><creatorcontrib>Islam, Md Monjorul ; Abu Nayem, S M ; Shah, Syed Shaheen ; Islam, Md Zahidul ; Aziz, Md Abdul ; Saleh Ahammad, A J</creatorcontrib><description>Nitrate (NO ) contamination from industrial, agricultural, and anthropogenic activities poses significant risks to human health and ecosystems. While traditional NO remediation methods are effective, they often generate secondary pollutants and incur high costs. Electrochemical NO reduction (ECNR) offers a sustainable alternative, converting NO into environmentally benign nitrogen (N ) or valuable ammonia (NH ). This review explores recent advancements in selective ECNR pathways for NO -to-N and NO -to-NH conversion, focusing on mechanistic insights, electrocatalyst development, and optimization strategies. Key factors influencing ECNR performance, such as electrode materials, electrolyte composition, and hydrogen evolution inhibition, are discussed. Additionally, the review highlights the role of single-atom, bimetallic, and nanostructured catalysts in enhancing faradaic efficiency, total N removal, and selectivity, with particular attention to Pd-Cu systems. Strategies to address challenges like low selectivity and catalyst degradation are also explored. This review underscores the potential of ECNR as a viable alternative to the energy-intensive Haber-Bosch process for NH production, aligning with global sustainability goals. Finally, we identify research gaps and propose future directions for improving the efficiency, stability, and scalability of ECNR technologies.</description><identifier>ISSN: 1528-0691</identifier><identifier>EISSN: 1528-0691</identifier><identifier>DOI: 10.1002/tcr.202400206</identifier><identifier>PMID: 39715734</identifier><language>eng</language><publisher>United States</publisher><ispartof>Chemical record, 2024-12, p.e202400206</ispartof><rights>2024 The Chemical Society of Japan and Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-3934-0913 ; 0000-0001-7568-5268</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39715734$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Islam, Md Monjorul</creatorcontrib><creatorcontrib>Abu Nayem, S M</creatorcontrib><creatorcontrib>Shah, Syed Shaheen</creatorcontrib><creatorcontrib>Islam, Md Zahidul</creatorcontrib><creatorcontrib>Aziz, Md Abdul</creatorcontrib><creatorcontrib>Saleh Ahammad, A J</creatorcontrib><title>Electrochemical Selective Nitrate Reduction: Pathways to Nitrogen and Ammonia Production</title><title>Chemical record</title><addtitle>Chem Rec</addtitle><description>Nitrate (NO ) contamination from industrial, agricultural, and anthropogenic activities poses significant risks to human health and ecosystems. While traditional NO remediation methods are effective, they often generate secondary pollutants and incur high costs. Electrochemical NO reduction (ECNR) offers a sustainable alternative, converting NO into environmentally benign nitrogen (N ) or valuable ammonia (NH ). This review explores recent advancements in selective ECNR pathways for NO -to-N and NO -to-NH conversion, focusing on mechanistic insights, electrocatalyst development, and optimization strategies. Key factors influencing ECNR performance, such as electrode materials, electrolyte composition, and hydrogen evolution inhibition, are discussed. Additionally, the review highlights the role of single-atom, bimetallic, and nanostructured catalysts in enhancing faradaic efficiency, total N removal, and selectivity, with particular attention to Pd-Cu systems. Strategies to address challenges like low selectivity and catalyst degradation are also explored. This review underscores the potential of ECNR as a viable alternative to the energy-intensive Haber-Bosch process for NH production, aligning with global sustainability goals. Finally, we identify research gaps and propose future directions for improving the efficiency, stability, and scalability of ECNR technologies.</description><issn>1528-0691</issn><issn>1528-0691</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkL1PwzAUxC0EoqUwsiKPLCl27MQ2W1WVD6mCCjqwRY7zQoOSONgOqP89AYLEdKd7P51OD6FzSuaUkPgqGDePScwHT9IDNKVJLCOSKnr4z0_QifdvhFDKhThGE6YETQTjU_SyqsEEZ80OmsroGj_Dd1B9AH6ogtMB8BMU_ZDY9hpvdNh96r3Hwf6c7Su0WLcFXjSNbSuNN86O8Ck6KnXt4WzUGdrerLbLu2j9eHu_XKyjLkl5xBmUKhUl52VJEmBMUU5lkUtpWKyHmYLlw1BJwPBC5LmgUtAigVQJGRNu2Axd_tZ2zr734EPWVN5AXesWbO8zRrmUTBGZDujFiPZ5A0XWuarRbp_9PYN9AbFzYJI</recordid><startdate>20241223</startdate><enddate>20241223</enddate><creator>Islam, Md Monjorul</creator><creator>Abu Nayem, S M</creator><creator>Shah, Syed Shaheen</creator><creator>Islam, Md Zahidul</creator><creator>Aziz, Md Abdul</creator><creator>Saleh Ahammad, A J</creator><scope>NPM</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3934-0913</orcidid><orcidid>https://orcid.org/0000-0001-7568-5268</orcidid></search><sort><creationdate>20241223</creationdate><title>Electrochemical Selective Nitrate Reduction: Pathways to Nitrogen and Ammonia Production</title><author>Islam, Md Monjorul ; Abu Nayem, S M ; Shah, Syed Shaheen ; Islam, Md Zahidul ; Aziz, Md Abdul ; Saleh Ahammad, A J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p564-43ef967f44ff05e3391418db88c32a39773b57380ec4d7bb71871d5e6978204c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Islam, Md Monjorul</creatorcontrib><creatorcontrib>Abu Nayem, S M</creatorcontrib><creatorcontrib>Shah, Syed Shaheen</creatorcontrib><creatorcontrib>Islam, Md Zahidul</creatorcontrib><creatorcontrib>Aziz, Md Abdul</creatorcontrib><creatorcontrib>Saleh Ahammad, A J</creatorcontrib><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>Chemical record</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Islam, Md Monjorul</au><au>Abu Nayem, S M</au><au>Shah, Syed Shaheen</au><au>Islam, Md Zahidul</au><au>Aziz, Md Abdul</au><au>Saleh Ahammad, A J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrochemical Selective Nitrate Reduction: Pathways to Nitrogen and Ammonia Production</atitle><jtitle>Chemical record</jtitle><addtitle>Chem Rec</addtitle><date>2024-12-23</date><risdate>2024</risdate><spage>e202400206</spage><pages>e202400206-</pages><issn>1528-0691</issn><eissn>1528-0691</eissn><abstract>Nitrate (NO ) contamination from industrial, agricultural, and anthropogenic activities poses significant risks to human health and ecosystems. While traditional NO remediation methods are effective, they often generate secondary pollutants and incur high costs. Electrochemical NO reduction (ECNR) offers a sustainable alternative, converting NO into environmentally benign nitrogen (N ) or valuable ammonia (NH ). This review explores recent advancements in selective ECNR pathways for NO -to-N and NO -to-NH conversion, focusing on mechanistic insights, electrocatalyst development, and optimization strategies. Key factors influencing ECNR performance, such as electrode materials, electrolyte composition, and hydrogen evolution inhibition, are discussed. Additionally, the review highlights the role of single-atom, bimetallic, and nanostructured catalysts in enhancing faradaic efficiency, total N removal, and selectivity, with particular attention to Pd-Cu systems. Strategies to address challenges like low selectivity and catalyst degradation are also explored. This review underscores the potential of ECNR as a viable alternative to the energy-intensive Haber-Bosch process for NH production, aligning with global sustainability goals. Finally, we identify research gaps and propose future directions for improving the efficiency, stability, and scalability of ECNR technologies.</abstract><cop>United States</cop><pmid>39715734</pmid><doi>10.1002/tcr.202400206</doi><orcidid>https://orcid.org/0000-0002-3934-0913</orcidid><orcidid>https://orcid.org/0000-0001-7568-5268</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1528-0691
ispartof Chemical record, 2024-12, p.e202400206
issn 1528-0691
1528-0691
language eng
recordid cdi_proquest_miscellaneous_3148839086
source Wiley
title Electrochemical Selective Nitrate Reduction: Pathways to Nitrogen and Ammonia Production
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T19%3A13%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrochemical%20Selective%20Nitrate%20Reduction:%20Pathways%20to%20Nitrogen%20and%20Ammonia%20Production&rft.jtitle=Chemical%20record&rft.au=Islam,%20Md%20Monjorul&rft.date=2024-12-23&rft.spage=e202400206&rft.pages=e202400206-&rft.issn=1528-0691&rft.eissn=1528-0691&rft_id=info:doi/10.1002/tcr.202400206&rft_dat=%3Cproquest_pubme%3E3148839086%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p564-43ef967f44ff05e3391418db88c32a39773b57380ec4d7bb71871d5e6978204c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3148839086&rft_id=info:pmid/39715734&rfr_iscdi=true