Loading…
Electrochemical Selective Nitrate Reduction: Pathways to Nitrogen and Ammonia Production
Nitrate (NO ) contamination from industrial, agricultural, and anthropogenic activities poses significant risks to human health and ecosystems. While traditional NO remediation methods are effective, they often generate secondary pollutants and incur high costs. Electrochemical NO reduction (ECNR) o...
Saved in:
Published in: | Chemical record 2024-12, p.e202400206 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | e202400206 |
container_title | Chemical record |
container_volume | |
creator | Islam, Md Monjorul Abu Nayem, S M Shah, Syed Shaheen Islam, Md Zahidul Aziz, Md Abdul Saleh Ahammad, A J |
description | Nitrate (NO
) contamination from industrial, agricultural, and anthropogenic activities poses significant risks to human health and ecosystems. While traditional NO
remediation methods are effective, they often generate secondary pollutants and incur high costs. Electrochemical NO
reduction (ECNR) offers a sustainable alternative, converting NO
into environmentally benign nitrogen (N
) or valuable ammonia (NH
). This review explores recent advancements in selective ECNR pathways for NO
-to-N
and NO
-to-NH
conversion, focusing on mechanistic insights, electrocatalyst development, and optimization strategies. Key factors influencing ECNR performance, such as electrode materials, electrolyte composition, and hydrogen evolution inhibition, are discussed. Additionally, the review highlights the role of single-atom, bimetallic, and nanostructured catalysts in enhancing faradaic efficiency, total N
removal, and selectivity, with particular attention to Pd-Cu systems. Strategies to address challenges like low selectivity and catalyst degradation are also explored. This review underscores the potential of ECNR as a viable alternative to the energy-intensive Haber-Bosch process for NH
production, aligning with global sustainability goals. Finally, we identify research gaps and propose future directions for improving the efficiency, stability, and scalability of ECNR technologies. |
doi_str_mv | 10.1002/tcr.202400206 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_3148839086</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3148839086</sourcerecordid><originalsourceid>FETCH-LOGICAL-p564-43ef967f44ff05e3391418db88c32a39773b57380ec4d7bb71871d5e6978204c3</originalsourceid><addsrcrecordid>eNpNkL1PwzAUxC0EoqUwsiKPLCl27MQ2W1WVD6mCCjqwRY7zQoOSONgOqP89AYLEdKd7P51OD6FzSuaUkPgqGDePScwHT9IDNKVJLCOSKnr4z0_QifdvhFDKhThGE6YETQTjU_SyqsEEZ80OmsroGj_Dd1B9AH6ogtMB8BMU_ZDY9hpvdNh96r3Hwf6c7Su0WLcFXjSNbSuNN86O8Ck6KnXt4WzUGdrerLbLu2j9eHu_XKyjLkl5xBmUKhUl52VJEmBMUU5lkUtpWKyHmYLlw1BJwPBC5LmgUtAigVQJGRNu2Axd_tZ2zr734EPWVN5AXesWbO8zRrmUTBGZDujFiPZ5A0XWuarRbp_9PYN9AbFzYJI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3148839086</pqid></control><display><type>article</type><title>Electrochemical Selective Nitrate Reduction: Pathways to Nitrogen and Ammonia Production</title><source>Wiley</source><creator>Islam, Md Monjorul ; Abu Nayem, S M ; Shah, Syed Shaheen ; Islam, Md Zahidul ; Aziz, Md Abdul ; Saleh Ahammad, A J</creator><creatorcontrib>Islam, Md Monjorul ; Abu Nayem, S M ; Shah, Syed Shaheen ; Islam, Md Zahidul ; Aziz, Md Abdul ; Saleh Ahammad, A J</creatorcontrib><description>Nitrate (NO
) contamination from industrial, agricultural, and anthropogenic activities poses significant risks to human health and ecosystems. While traditional NO
remediation methods are effective, they often generate secondary pollutants and incur high costs. Electrochemical NO
reduction (ECNR) offers a sustainable alternative, converting NO
into environmentally benign nitrogen (N
) or valuable ammonia (NH
). This review explores recent advancements in selective ECNR pathways for NO
-to-N
and NO
-to-NH
conversion, focusing on mechanistic insights, electrocatalyst development, and optimization strategies. Key factors influencing ECNR performance, such as electrode materials, electrolyte composition, and hydrogen evolution inhibition, are discussed. Additionally, the review highlights the role of single-atom, bimetallic, and nanostructured catalysts in enhancing faradaic efficiency, total N
removal, and selectivity, with particular attention to Pd-Cu systems. Strategies to address challenges like low selectivity and catalyst degradation are also explored. This review underscores the potential of ECNR as a viable alternative to the energy-intensive Haber-Bosch process for NH
production, aligning with global sustainability goals. Finally, we identify research gaps and propose future directions for improving the efficiency, stability, and scalability of ECNR technologies.</description><identifier>ISSN: 1528-0691</identifier><identifier>EISSN: 1528-0691</identifier><identifier>DOI: 10.1002/tcr.202400206</identifier><identifier>PMID: 39715734</identifier><language>eng</language><publisher>United States</publisher><ispartof>Chemical record, 2024-12, p.e202400206</ispartof><rights>2024 The Chemical Society of Japan and Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-3934-0913 ; 0000-0001-7568-5268</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39715734$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Islam, Md Monjorul</creatorcontrib><creatorcontrib>Abu Nayem, S M</creatorcontrib><creatorcontrib>Shah, Syed Shaheen</creatorcontrib><creatorcontrib>Islam, Md Zahidul</creatorcontrib><creatorcontrib>Aziz, Md Abdul</creatorcontrib><creatorcontrib>Saleh Ahammad, A J</creatorcontrib><title>Electrochemical Selective Nitrate Reduction: Pathways to Nitrogen and Ammonia Production</title><title>Chemical record</title><addtitle>Chem Rec</addtitle><description>Nitrate (NO
) contamination from industrial, agricultural, and anthropogenic activities poses significant risks to human health and ecosystems. While traditional NO
remediation methods are effective, they often generate secondary pollutants and incur high costs. Electrochemical NO
reduction (ECNR) offers a sustainable alternative, converting NO
into environmentally benign nitrogen (N
) or valuable ammonia (NH
). This review explores recent advancements in selective ECNR pathways for NO
-to-N
and NO
-to-NH
conversion, focusing on mechanistic insights, electrocatalyst development, and optimization strategies. Key factors influencing ECNR performance, such as electrode materials, electrolyte composition, and hydrogen evolution inhibition, are discussed. Additionally, the review highlights the role of single-atom, bimetallic, and nanostructured catalysts in enhancing faradaic efficiency, total N
removal, and selectivity, with particular attention to Pd-Cu systems. Strategies to address challenges like low selectivity and catalyst degradation are also explored. This review underscores the potential of ECNR as a viable alternative to the energy-intensive Haber-Bosch process for NH
production, aligning with global sustainability goals. Finally, we identify research gaps and propose future directions for improving the efficiency, stability, and scalability of ECNR technologies.</description><issn>1528-0691</issn><issn>1528-0691</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkL1PwzAUxC0EoqUwsiKPLCl27MQ2W1WVD6mCCjqwRY7zQoOSONgOqP89AYLEdKd7P51OD6FzSuaUkPgqGDePScwHT9IDNKVJLCOSKnr4z0_QifdvhFDKhThGE6YETQTjU_SyqsEEZ80OmsroGj_Dd1B9AH6ogtMB8BMU_ZDY9hpvdNh96r3Hwf6c7Su0WLcFXjSNbSuNN86O8Ck6KnXt4WzUGdrerLbLu2j9eHu_XKyjLkl5xBmUKhUl52VJEmBMUU5lkUtpWKyHmYLlw1BJwPBC5LmgUtAigVQJGRNu2Axd_tZ2zr734EPWVN5AXesWbO8zRrmUTBGZDujFiPZ5A0XWuarRbp_9PYN9AbFzYJI</recordid><startdate>20241223</startdate><enddate>20241223</enddate><creator>Islam, Md Monjorul</creator><creator>Abu Nayem, S M</creator><creator>Shah, Syed Shaheen</creator><creator>Islam, Md Zahidul</creator><creator>Aziz, Md Abdul</creator><creator>Saleh Ahammad, A J</creator><scope>NPM</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3934-0913</orcidid><orcidid>https://orcid.org/0000-0001-7568-5268</orcidid></search><sort><creationdate>20241223</creationdate><title>Electrochemical Selective Nitrate Reduction: Pathways to Nitrogen and Ammonia Production</title><author>Islam, Md Monjorul ; Abu Nayem, S M ; Shah, Syed Shaheen ; Islam, Md Zahidul ; Aziz, Md Abdul ; Saleh Ahammad, A J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p564-43ef967f44ff05e3391418db88c32a39773b57380ec4d7bb71871d5e6978204c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Islam, Md Monjorul</creatorcontrib><creatorcontrib>Abu Nayem, S M</creatorcontrib><creatorcontrib>Shah, Syed Shaheen</creatorcontrib><creatorcontrib>Islam, Md Zahidul</creatorcontrib><creatorcontrib>Aziz, Md Abdul</creatorcontrib><creatorcontrib>Saleh Ahammad, A J</creatorcontrib><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>Chemical record</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Islam, Md Monjorul</au><au>Abu Nayem, S M</au><au>Shah, Syed Shaheen</au><au>Islam, Md Zahidul</au><au>Aziz, Md Abdul</au><au>Saleh Ahammad, A J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrochemical Selective Nitrate Reduction: Pathways to Nitrogen and Ammonia Production</atitle><jtitle>Chemical record</jtitle><addtitle>Chem Rec</addtitle><date>2024-12-23</date><risdate>2024</risdate><spage>e202400206</spage><pages>e202400206-</pages><issn>1528-0691</issn><eissn>1528-0691</eissn><abstract>Nitrate (NO
) contamination from industrial, agricultural, and anthropogenic activities poses significant risks to human health and ecosystems. While traditional NO
remediation methods are effective, they often generate secondary pollutants and incur high costs. Electrochemical NO
reduction (ECNR) offers a sustainable alternative, converting NO
into environmentally benign nitrogen (N
) or valuable ammonia (NH
). This review explores recent advancements in selective ECNR pathways for NO
-to-N
and NO
-to-NH
conversion, focusing on mechanistic insights, electrocatalyst development, and optimization strategies. Key factors influencing ECNR performance, such as electrode materials, electrolyte composition, and hydrogen evolution inhibition, are discussed. Additionally, the review highlights the role of single-atom, bimetallic, and nanostructured catalysts in enhancing faradaic efficiency, total N
removal, and selectivity, with particular attention to Pd-Cu systems. Strategies to address challenges like low selectivity and catalyst degradation are also explored. This review underscores the potential of ECNR as a viable alternative to the energy-intensive Haber-Bosch process for NH
production, aligning with global sustainability goals. Finally, we identify research gaps and propose future directions for improving the efficiency, stability, and scalability of ECNR technologies.</abstract><cop>United States</cop><pmid>39715734</pmid><doi>10.1002/tcr.202400206</doi><orcidid>https://orcid.org/0000-0002-3934-0913</orcidid><orcidid>https://orcid.org/0000-0001-7568-5268</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1528-0691 |
ispartof | Chemical record, 2024-12, p.e202400206 |
issn | 1528-0691 1528-0691 |
language | eng |
recordid | cdi_proquest_miscellaneous_3148839086 |
source | Wiley |
title | Electrochemical Selective Nitrate Reduction: Pathways to Nitrogen and Ammonia Production |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T19%3A13%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrochemical%20Selective%20Nitrate%20Reduction:%20Pathways%20to%20Nitrogen%20and%20Ammonia%20Production&rft.jtitle=Chemical%20record&rft.au=Islam,%20Md%20Monjorul&rft.date=2024-12-23&rft.spage=e202400206&rft.pages=e202400206-&rft.issn=1528-0691&rft.eissn=1528-0691&rft_id=info:doi/10.1002/tcr.202400206&rft_dat=%3Cproquest_pubme%3E3148839086%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p564-43ef967f44ff05e3391418db88c32a39773b57380ec4d7bb71871d5e6978204c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3148839086&rft_id=info:pmid/39715734&rfr_iscdi=true |