Loading…

Capacitive pressure sensors based on bioinspired structured electrode for human-machine interaction applications

Flexible pressure sensor is a crucial component of tactile sensors and plays an integral role in numerous significant fields. Despite the considerable effort put forth, how to further improve sensitivity with ingenious yet easy-to-manufacture structures and apply them to emerging fields such as stru...

Full description

Saved in:
Bibliographic Details
Published in:Biosensors & bioelectronics 2025-03, Vol.271, p.117086, Article 117086
Main Authors: Wang, Dakai, Li, Bo, Ma, Zhichao, Zhang, Changchao, Liu, Linpeng, Niu, Shichao, Han, Zhiwu, Ren, Luquan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c1526-fca5eed5f9ed220ac9cf9558ff0a9e6fee93f139e3b5b1edecde32761ecf7d6d3
container_end_page
container_issue
container_start_page 117086
container_title Biosensors & bioelectronics
container_volume 271
creator Wang, Dakai
Li, Bo
Ma, Zhichao
Zhang, Changchao
Liu, Linpeng
Niu, Shichao
Han, Zhiwu
Ren, Luquan
description Flexible pressure sensor is a crucial component of tactile sensors and plays an integral role in numerous significant fields. Despite the considerable effort put forth, how to further improve sensitivity with ingenious yet easy-to-manufacture structures and apply them to emerging fields such as structure/materials recognition, human motion monitoring, and human-machine interaction remains a challenge. Here, we develop a highly sensitive flexible capacitive pressure sensor featuring a structured electrode layer with embedded microcracks and a dielectric layer with micro-convex structures, which are combined with an iontronic interface. The sophisticated design endows the sensor with superior perceptual performance, showing a relatively linear sensitivity of 1613 kPa−1 in the range of 50 kPa and a detection limit of ∼6.7 Pa. Due to its excellent sensing capabilities, the sensors have been demonstrated for microstructure/material stiffness recognition and human motion monitoring. Furthermore, by integrating a single sensor with an inertial unit, the sensor gains the capability to output multiple sets of instructions. This work provides innovative design inspiration for flexible electronics.
doi_str_mv 10.1016/j.bios.2024.117086
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3149537782</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0956566324010935</els_id><sourcerecordid>3149537782</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1526-fca5eed5f9ed220ac9cf9558ff0a9e6fee93f139e3b5b1edecde32761ecf7d6d3</originalsourceid><addsrcrecordid>eNp9kE9r3DAQxUVJaLZpv0APxcdcvNWflbyCXMKSpIVAL-lZyKMR0WJbrsYO5NvHZpMce5o38N4b5sfYd8G3ggvz87htU6at5HK3FaLhe_OJbcS-UfVOKn3GNtxqU2tj1AX7QnTknDfC8s_sQtlGip0xGzYe_OghTekZq7Eg0VywIhwoF6paTxiqPFTLnTTQmMqy0lRmmOZVYocwlRywirlUT3Pvh7r38JQGrNIwYfEwpSXux7FL4FdNX9l59B3ht7d5yf7e3T4eftUPf-5_H24eahBamjqC14hBR4tBSu7BQrRa72Pk3qKJiFZFoSyqVrcCA0JAJRsjEGITTFCX7OrUO5b8b0aaXJ8IsOv8gHkmp8TOatU0e7lY5ckKJRMVjG4sqfflxQnuVtLu6FbSbiXtTqSX0I-3_rntMXxE3tEuhuuTAZcvnxMWR5BwAAwLRphcyOl__a-8TZQM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3149537782</pqid></control><display><type>article</type><title>Capacitive pressure sensors based on bioinspired structured electrode for human-machine interaction applications</title><source>Elsevier</source><creator>Wang, Dakai ; Li, Bo ; Ma, Zhichao ; Zhang, Changchao ; Liu, Linpeng ; Niu, Shichao ; Han, Zhiwu ; Ren, Luquan</creator><creatorcontrib>Wang, Dakai ; Li, Bo ; Ma, Zhichao ; Zhang, Changchao ; Liu, Linpeng ; Niu, Shichao ; Han, Zhiwu ; Ren, Luquan</creatorcontrib><description>Flexible pressure sensor is a crucial component of tactile sensors and plays an integral role in numerous significant fields. Despite the considerable effort put forth, how to further improve sensitivity with ingenious yet easy-to-manufacture structures and apply them to emerging fields such as structure/materials recognition, human motion monitoring, and human-machine interaction remains a challenge. Here, we develop a highly sensitive flexible capacitive pressure sensor featuring a structured electrode layer with embedded microcracks and a dielectric layer with micro-convex structures, which are combined with an iontronic interface. The sophisticated design endows the sensor with superior perceptual performance, showing a relatively linear sensitivity of 1613 kPa−1 in the range of 50 kPa and a detection limit of ∼6.7 Pa. Due to its excellent sensing capabilities, the sensors have been demonstrated for microstructure/material stiffness recognition and human motion monitoring. Furthermore, by integrating a single sensor with an inertial unit, the sensor gains the capability to output multiple sets of instructions. This work provides innovative design inspiration for flexible electronics.</description><identifier>ISSN: 0956-5663</identifier><identifier>ISSN: 1873-4235</identifier><identifier>EISSN: 1873-4235</identifier><identifier>DOI: 10.1016/j.bios.2024.117086</identifier><identifier>PMID: 39721466</identifier><language>eng</language><publisher>England: Elsevier B.V</publisher><subject>Bioinspired design ; Crack and convex structures ; Human-machine interaction ; Pressure sensors ; Scorpion</subject><ispartof>Biosensors &amp; bioelectronics, 2025-03, Vol.271, p.117086, Article 117086</ispartof><rights>2024 Elsevier B.V.</rights><rights>Copyright © 2024 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1526-fca5eed5f9ed220ac9cf9558ff0a9e6fee93f139e3b5b1edecde32761ecf7d6d3</cites><orcidid>0000-0002-4839-3224</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39721466$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Dakai</creatorcontrib><creatorcontrib>Li, Bo</creatorcontrib><creatorcontrib>Ma, Zhichao</creatorcontrib><creatorcontrib>Zhang, Changchao</creatorcontrib><creatorcontrib>Liu, Linpeng</creatorcontrib><creatorcontrib>Niu, Shichao</creatorcontrib><creatorcontrib>Han, Zhiwu</creatorcontrib><creatorcontrib>Ren, Luquan</creatorcontrib><title>Capacitive pressure sensors based on bioinspired structured electrode for human-machine interaction applications</title><title>Biosensors &amp; bioelectronics</title><addtitle>Biosens Bioelectron</addtitle><description>Flexible pressure sensor is a crucial component of tactile sensors and plays an integral role in numerous significant fields. Despite the considerable effort put forth, how to further improve sensitivity with ingenious yet easy-to-manufacture structures and apply them to emerging fields such as structure/materials recognition, human motion monitoring, and human-machine interaction remains a challenge. Here, we develop a highly sensitive flexible capacitive pressure sensor featuring a structured electrode layer with embedded microcracks and a dielectric layer with micro-convex structures, which are combined with an iontronic interface. The sophisticated design endows the sensor with superior perceptual performance, showing a relatively linear sensitivity of 1613 kPa−1 in the range of 50 kPa and a detection limit of ∼6.7 Pa. Due to its excellent sensing capabilities, the sensors have been demonstrated for microstructure/material stiffness recognition and human motion monitoring. Furthermore, by integrating a single sensor with an inertial unit, the sensor gains the capability to output multiple sets of instructions. This work provides innovative design inspiration for flexible electronics.</description><subject>Bioinspired design</subject><subject>Crack and convex structures</subject><subject>Human-machine interaction</subject><subject>Pressure sensors</subject><subject>Scorpion</subject><issn>0956-5663</issn><issn>1873-4235</issn><issn>1873-4235</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNp9kE9r3DAQxUVJaLZpv0APxcdcvNWflbyCXMKSpIVAL-lZyKMR0WJbrsYO5NvHZpMce5o38N4b5sfYd8G3ggvz87htU6at5HK3FaLhe_OJbcS-UfVOKn3GNtxqU2tj1AX7QnTknDfC8s_sQtlGip0xGzYe_OghTekZq7Eg0VywIhwoF6paTxiqPFTLnTTQmMqy0lRmmOZVYocwlRywirlUT3Pvh7r38JQGrNIwYfEwpSXux7FL4FdNX9l59B3ht7d5yf7e3T4eftUPf-5_H24eahBamjqC14hBR4tBSu7BQrRa72Pk3qKJiFZFoSyqVrcCA0JAJRsjEGITTFCX7OrUO5b8b0aaXJ8IsOv8gHkmp8TOatU0e7lY5ckKJRMVjG4sqfflxQnuVtLu6FbSbiXtTqSX0I-3_rntMXxE3tEuhuuTAZcvnxMWR5BwAAwLRphcyOl__a-8TZQM</recordid><startdate>20250301</startdate><enddate>20250301</enddate><creator>Wang, Dakai</creator><creator>Li, Bo</creator><creator>Ma, Zhichao</creator><creator>Zhang, Changchao</creator><creator>Liu, Linpeng</creator><creator>Niu, Shichao</creator><creator>Han, Zhiwu</creator><creator>Ren, Luquan</creator><general>Elsevier B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4839-3224</orcidid></search><sort><creationdate>20250301</creationdate><title>Capacitive pressure sensors based on bioinspired structured electrode for human-machine interaction applications</title><author>Wang, Dakai ; Li, Bo ; Ma, Zhichao ; Zhang, Changchao ; Liu, Linpeng ; Niu, Shichao ; Han, Zhiwu ; Ren, Luquan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1526-fca5eed5f9ed220ac9cf9558ff0a9e6fee93f139e3b5b1edecde32761ecf7d6d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Bioinspired design</topic><topic>Crack and convex structures</topic><topic>Human-machine interaction</topic><topic>Pressure sensors</topic><topic>Scorpion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Dakai</creatorcontrib><creatorcontrib>Li, Bo</creatorcontrib><creatorcontrib>Ma, Zhichao</creatorcontrib><creatorcontrib>Zhang, Changchao</creatorcontrib><creatorcontrib>Liu, Linpeng</creatorcontrib><creatorcontrib>Niu, Shichao</creatorcontrib><creatorcontrib>Han, Zhiwu</creatorcontrib><creatorcontrib>Ren, Luquan</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Biosensors &amp; bioelectronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Dakai</au><au>Li, Bo</au><au>Ma, Zhichao</au><au>Zhang, Changchao</au><au>Liu, Linpeng</au><au>Niu, Shichao</au><au>Han, Zhiwu</au><au>Ren, Luquan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Capacitive pressure sensors based on bioinspired structured electrode for human-machine interaction applications</atitle><jtitle>Biosensors &amp; bioelectronics</jtitle><addtitle>Biosens Bioelectron</addtitle><date>2025-03-01</date><risdate>2025</risdate><volume>271</volume><spage>117086</spage><pages>117086-</pages><artnum>117086</artnum><issn>0956-5663</issn><issn>1873-4235</issn><eissn>1873-4235</eissn><abstract>Flexible pressure sensor is a crucial component of tactile sensors and plays an integral role in numerous significant fields. Despite the considerable effort put forth, how to further improve sensitivity with ingenious yet easy-to-manufacture structures and apply them to emerging fields such as structure/materials recognition, human motion monitoring, and human-machine interaction remains a challenge. Here, we develop a highly sensitive flexible capacitive pressure sensor featuring a structured electrode layer with embedded microcracks and a dielectric layer with micro-convex structures, which are combined with an iontronic interface. The sophisticated design endows the sensor with superior perceptual performance, showing a relatively linear sensitivity of 1613 kPa−1 in the range of 50 kPa and a detection limit of ∼6.7 Pa. Due to its excellent sensing capabilities, the sensors have been demonstrated for microstructure/material stiffness recognition and human motion monitoring. Furthermore, by integrating a single sensor with an inertial unit, the sensor gains the capability to output multiple sets of instructions. This work provides innovative design inspiration for flexible electronics.</abstract><cop>England</cop><pub>Elsevier B.V</pub><pmid>39721466</pmid><doi>10.1016/j.bios.2024.117086</doi><orcidid>https://orcid.org/0000-0002-4839-3224</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0956-5663
ispartof Biosensors & bioelectronics, 2025-03, Vol.271, p.117086, Article 117086
issn 0956-5663
1873-4235
1873-4235
language eng
recordid cdi_proquest_miscellaneous_3149537782
source Elsevier
subjects Bioinspired design
Crack and convex structures
Human-machine interaction
Pressure sensors
Scorpion
title Capacitive pressure sensors based on bioinspired structured electrode for human-machine interaction applications
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T03%3A08%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Capacitive%20pressure%20sensors%20based%20on%20bioinspired%20structured%20electrode%20for%20human-machine%20interaction%20applications&rft.jtitle=Biosensors%20&%20bioelectronics&rft.au=Wang,%20Dakai&rft.date=2025-03-01&rft.volume=271&rft.spage=117086&rft.pages=117086-&rft.artnum=117086&rft.issn=0956-5663&rft.eissn=1873-4235&rft_id=info:doi/10.1016/j.bios.2024.117086&rft_dat=%3Cproquest_cross%3E3149537782%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1526-fca5eed5f9ed220ac9cf9558ff0a9e6fee93f139e3b5b1edecde32761ecf7d6d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3149537782&rft_id=info:pmid/39721466&rfr_iscdi=true