Loading…

Development of an ultrasensitive sensor for detecting metol in environmental water samples using ruddlesden-popper type layered perovskite (La2NiO4) combined with graphene oxide

•Layered perovskite (La2NiO4) infused with GO sheet has used as active material for MTO sensing.•The sensor has a high sensitivity towards MTO detection with a LOD of 6.4 nM.•This electrochemical sensor has good stability, anti-interference, and reproducibility.•It has shown practical application to...

Full description

Saved in:
Bibliographic Details
Published in:Water research (Oxford) 2025-04, Vol.273, p.122998, Article 122998
Main Authors: Manimaran, Parthasarathi, Tamilalagan, Elayappan, Chen, Shen-Ming, Govindharaj, Abirami
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c241t-52ddfb7df2dc4bf3c43fd9d55d563637ca4b46465dff9576edff0a13bb6385c73
container_end_page
container_issue
container_start_page 122998
container_title Water research (Oxford)
container_volume 273
creator Manimaran, Parthasarathi
Tamilalagan, Elayappan
Chen, Shen-Ming
Govindharaj, Abirami
description •Layered perovskite (La2NiO4) infused with GO sheet has used as active material for MTO sensing.•The sensor has a high sensitivity towards MTO detection with a LOD of 6.4 nM.•This electrochemical sensor has good stability, anti-interference, and reproducibility.•It has shown practical application to rapid MTO detection in water and urine sample. Metol (MTO), a commonly used photographic developer, has become an environmental pollutant due to its extensive use and subsequent release into water sources. The accumulation of MTO poses significant risks, including aquatic toxicity and potential bioaccumulation, leading to adverse effects on ecosystems. To address these environmental challenges, we developed a La₂NiO4 combined with graphene oxide (La₂NiO₄@GO) nanocomposite modified glassy carbon electrode (GCE) for the ultrasensitive detection of MTO. The La₂NiO₄ was synthesized via a hydrothermal method and subsequently integrated with graphene oxide through a sonochemical technique, with comprehensive characterization using Fourier-transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), and High-resolution transmission electron microscopy (HR-TEM). Electrochemical analysis revealed that the La₂NiO₄@GO-modified electrode exhibited a low charge transfer resistance of 20 Ω. Using differential pulse voltammetry (DPV), the electrode demonstrated a limit of detection (LOD) of 6.4 nM for MTO, with a high sensitivity of 10.84 µA µM⁻¹cm⁻² and excellent anti-inference property towards MTO tested along with interfering substances. The sensor was successfully applied to real environmental water samples and human urine samples, showing excellent recovery rates of MTO. This work underscores the potential of La₂NiO₄@GO-modified electrodes in monitoring and mitigating the environmental impact of MTO, contributing to a healthy environment. [Display omitted]
doi_str_mv 10.1016/j.watres.2024.122998
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3149538006</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0043135424018980</els_id><sourcerecordid>3149538006</sourcerecordid><originalsourceid>FETCH-LOGICAL-c241t-52ddfb7df2dc4bf3c43fd9d55d563637ca4b46465dff9576edff0a13bb6385c73</originalsourceid><addsrcrecordid>eNp9kU1v1DAQhi0EokvhHyDkYzlk8VeSzQUJlU9pRS9wthx73HpJ7GA7Kfuz-Ic4SuHIwRp75n1nPHoQeknJnhLavDnt71WOkPaMMLGnjHXd4RHa0UPbVUyIw2O0I0TwivJaXKBnKZ0IIYzx7im64F3LaE3IDv1-DwsMYRrBZxwsVh7PQ44qgU8uuwXwegsR23IMZNDZ-Vs8Qg4Ddh6DX1wMfrWrAZcfQcRJjdMACc9plcbZmPIy4KspTFOp5_MEeFBniGBwSYQl_XAZ8NVRsa_uRrzGOoy986V67_Idvo1qugMPOPxyBp6jJ1YNCV48xEv0_eOHb9efq-PNpy_X746VZoLmqmbG2L41lhktesu14NZ0pq5N3fCGt1qJXjSiqY21Xd02UCJRlPd9ww-1bvklutr6TjH8nCFlObqkYRiUhzAnyanoan4gpClSsUl1DClFsHKKblTxLCmRKyx5khssucKSG6xie_UwYe5HMP9Mf-kUwdtNAGXPxUGUSTvwGoyLBYQ0wf1_wh_uEa1s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3149538006</pqid></control><display><type>article</type><title>Development of an ultrasensitive sensor for detecting metol in environmental water samples using ruddlesden-popper type layered perovskite (La2NiO4) combined with graphene oxide</title><source>ScienceDirect Freedom Collection</source><creator>Manimaran, Parthasarathi ; Tamilalagan, Elayappan ; Chen, Shen-Ming ; Govindharaj, Abirami</creator><creatorcontrib>Manimaran, Parthasarathi ; Tamilalagan, Elayappan ; Chen, Shen-Ming ; Govindharaj, Abirami</creatorcontrib><description>•Layered perovskite (La2NiO4) infused with GO sheet has used as active material for MTO sensing.•The sensor has a high sensitivity towards MTO detection with a LOD of 6.4 nM.•This electrochemical sensor has good stability, anti-interference, and reproducibility.•It has shown practical application to rapid MTO detection in water and urine sample. Metol (MTO), a commonly used photographic developer, has become an environmental pollutant due to its extensive use and subsequent release into water sources. The accumulation of MTO poses significant risks, including aquatic toxicity and potential bioaccumulation, leading to adverse effects on ecosystems. To address these environmental challenges, we developed a La₂NiO4 combined with graphene oxide (La₂NiO₄@GO) nanocomposite modified glassy carbon electrode (GCE) for the ultrasensitive detection of MTO. The La₂NiO₄ was synthesized via a hydrothermal method and subsequently integrated with graphene oxide through a sonochemical technique, with comprehensive characterization using Fourier-transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), and High-resolution transmission electron microscopy (HR-TEM). Electrochemical analysis revealed that the La₂NiO₄@GO-modified electrode exhibited a low charge transfer resistance of 20 Ω. Using differential pulse voltammetry (DPV), the electrode demonstrated a limit of detection (LOD) of 6.4 nM for MTO, with a high sensitivity of 10.84 µA µM⁻¹cm⁻² and excellent anti-inference property towards MTO tested along with interfering substances. The sensor was successfully applied to real environmental water samples and human urine samples, showing excellent recovery rates of MTO. This work underscores the potential of La₂NiO₄@GO-modified electrodes in monitoring and mitigating the environmental impact of MTO, contributing to a healthy environment. [Display omitted]</description><identifier>ISSN: 0043-1354</identifier><identifier>ISSN: 1879-2448</identifier><identifier>EISSN: 1879-2448</identifier><identifier>DOI: 10.1016/j.watres.2024.122998</identifier><identifier>PMID: 39721500</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Calcium Compounds - chemistry ; Electrochemical sensing ; Electrochemical Techniques ; Electrodes ; Environmental Monitoring - methods ; Graphite - chemistry ; La2NiO4@GO nanocomposite ; Lanthanum - chemistry ; Limit of Detection ; Nanocomposites - chemistry ; Organic pollutant ; Oxides - chemistry ; P-methylamino phenol sulfate ; Photoelectron Spectroscopy ; Spectroscopy, Fourier Transform Infrared ; Titanium - chemistry ; Voltammetry ; Water Pollutants, Chemical - analysis</subject><ispartof>Water research (Oxford), 2025-04, Vol.273, p.122998, Article 122998</ispartof><rights>2024</rights><rights>Copyright © 2024. Published by Elsevier Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c241t-52ddfb7df2dc4bf3c43fd9d55d563637ca4b46465dff9576edff0a13bb6385c73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39721500$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Manimaran, Parthasarathi</creatorcontrib><creatorcontrib>Tamilalagan, Elayappan</creatorcontrib><creatorcontrib>Chen, Shen-Ming</creatorcontrib><creatorcontrib>Govindharaj, Abirami</creatorcontrib><title>Development of an ultrasensitive sensor for detecting metol in environmental water samples using ruddlesden-popper type layered perovskite (La2NiO4) combined with graphene oxide</title><title>Water research (Oxford)</title><addtitle>Water Res</addtitle><description>•Layered perovskite (La2NiO4) infused with GO sheet has used as active material for MTO sensing.•The sensor has a high sensitivity towards MTO detection with a LOD of 6.4 nM.•This electrochemical sensor has good stability, anti-interference, and reproducibility.•It has shown practical application to rapid MTO detection in water and urine sample. Metol (MTO), a commonly used photographic developer, has become an environmental pollutant due to its extensive use and subsequent release into water sources. The accumulation of MTO poses significant risks, including aquatic toxicity and potential bioaccumulation, leading to adverse effects on ecosystems. To address these environmental challenges, we developed a La₂NiO4 combined with graphene oxide (La₂NiO₄@GO) nanocomposite modified glassy carbon electrode (GCE) for the ultrasensitive detection of MTO. The La₂NiO₄ was synthesized via a hydrothermal method and subsequently integrated with graphene oxide through a sonochemical technique, with comprehensive characterization using Fourier-transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), and High-resolution transmission electron microscopy (HR-TEM). Electrochemical analysis revealed that the La₂NiO₄@GO-modified electrode exhibited a low charge transfer resistance of 20 Ω. Using differential pulse voltammetry (DPV), the electrode demonstrated a limit of detection (LOD) of 6.4 nM for MTO, with a high sensitivity of 10.84 µA µM⁻¹cm⁻² and excellent anti-inference property towards MTO tested along with interfering substances. The sensor was successfully applied to real environmental water samples and human urine samples, showing excellent recovery rates of MTO. This work underscores the potential of La₂NiO₄@GO-modified electrodes in monitoring and mitigating the environmental impact of MTO, contributing to a healthy environment. [Display omitted]</description><subject>Calcium Compounds - chemistry</subject><subject>Electrochemical sensing</subject><subject>Electrochemical Techniques</subject><subject>Electrodes</subject><subject>Environmental Monitoring - methods</subject><subject>Graphite - chemistry</subject><subject>La2NiO4@GO nanocomposite</subject><subject>Lanthanum - chemistry</subject><subject>Limit of Detection</subject><subject>Nanocomposites - chemistry</subject><subject>Organic pollutant</subject><subject>Oxides - chemistry</subject><subject>P-methylamino phenol sulfate</subject><subject>Photoelectron Spectroscopy</subject><subject>Spectroscopy, Fourier Transform Infrared</subject><subject>Titanium - chemistry</subject><subject>Voltammetry</subject><subject>Water Pollutants, Chemical - analysis</subject><issn>0043-1354</issn><issn>1879-2448</issn><issn>1879-2448</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNp9kU1v1DAQhi0EokvhHyDkYzlk8VeSzQUJlU9pRS9wthx73HpJ7GA7Kfuz-Ic4SuHIwRp75n1nPHoQeknJnhLavDnt71WOkPaMMLGnjHXd4RHa0UPbVUyIw2O0I0TwivJaXKBnKZ0IIYzx7im64F3LaE3IDv1-DwsMYRrBZxwsVh7PQ44qgU8uuwXwegsR23IMZNDZ-Vs8Qg4Ddh6DX1wMfrWrAZcfQcRJjdMACc9plcbZmPIy4KspTFOp5_MEeFBniGBwSYQl_XAZ8NVRsa_uRrzGOoy986V67_Idvo1qugMPOPxyBp6jJ1YNCV48xEv0_eOHb9efq-PNpy_X746VZoLmqmbG2L41lhktesu14NZ0pq5N3fCGt1qJXjSiqY21Xd02UCJRlPd9ww-1bvklutr6TjH8nCFlObqkYRiUhzAnyanoan4gpClSsUl1DClFsHKKblTxLCmRKyx5khssucKSG6xie_UwYe5HMP9Mf-kUwdtNAGXPxUGUSTvwGoyLBYQ0wf1_wh_uEa1s</recordid><startdate>20250401</startdate><enddate>20250401</enddate><creator>Manimaran, Parthasarathi</creator><creator>Tamilalagan, Elayappan</creator><creator>Chen, Shen-Ming</creator><creator>Govindharaj, Abirami</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20250401</creationdate><title>Development of an ultrasensitive sensor for detecting metol in environmental water samples using ruddlesden-popper type layered perovskite (La2NiO4) combined with graphene oxide</title><author>Manimaran, Parthasarathi ; Tamilalagan, Elayappan ; Chen, Shen-Ming ; Govindharaj, Abirami</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c241t-52ddfb7df2dc4bf3c43fd9d55d563637ca4b46465dff9576edff0a13bb6385c73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Calcium Compounds - chemistry</topic><topic>Electrochemical sensing</topic><topic>Electrochemical Techniques</topic><topic>Electrodes</topic><topic>Environmental Monitoring - methods</topic><topic>Graphite - chemistry</topic><topic>La2NiO4@GO nanocomposite</topic><topic>Lanthanum - chemistry</topic><topic>Limit of Detection</topic><topic>Nanocomposites - chemistry</topic><topic>Organic pollutant</topic><topic>Oxides - chemistry</topic><topic>P-methylamino phenol sulfate</topic><topic>Photoelectron Spectroscopy</topic><topic>Spectroscopy, Fourier Transform Infrared</topic><topic>Titanium - chemistry</topic><topic>Voltammetry</topic><topic>Water Pollutants, Chemical - analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Manimaran, Parthasarathi</creatorcontrib><creatorcontrib>Tamilalagan, Elayappan</creatorcontrib><creatorcontrib>Chen, Shen-Ming</creatorcontrib><creatorcontrib>Govindharaj, Abirami</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Water research (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Manimaran, Parthasarathi</au><au>Tamilalagan, Elayappan</au><au>Chen, Shen-Ming</au><au>Govindharaj, Abirami</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of an ultrasensitive sensor for detecting metol in environmental water samples using ruddlesden-popper type layered perovskite (La2NiO4) combined with graphene oxide</atitle><jtitle>Water research (Oxford)</jtitle><addtitle>Water Res</addtitle><date>2025-04-01</date><risdate>2025</risdate><volume>273</volume><spage>122998</spage><pages>122998-</pages><artnum>122998</artnum><issn>0043-1354</issn><issn>1879-2448</issn><eissn>1879-2448</eissn><abstract>•Layered perovskite (La2NiO4) infused with GO sheet has used as active material for MTO sensing.•The sensor has a high sensitivity towards MTO detection with a LOD of 6.4 nM.•This electrochemical sensor has good stability, anti-interference, and reproducibility.•It has shown practical application to rapid MTO detection in water and urine sample. Metol (MTO), a commonly used photographic developer, has become an environmental pollutant due to its extensive use and subsequent release into water sources. The accumulation of MTO poses significant risks, including aquatic toxicity and potential bioaccumulation, leading to adverse effects on ecosystems. To address these environmental challenges, we developed a La₂NiO4 combined with graphene oxide (La₂NiO₄@GO) nanocomposite modified glassy carbon electrode (GCE) for the ultrasensitive detection of MTO. The La₂NiO₄ was synthesized via a hydrothermal method and subsequently integrated with graphene oxide through a sonochemical technique, with comprehensive characterization using Fourier-transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), and High-resolution transmission electron microscopy (HR-TEM). Electrochemical analysis revealed that the La₂NiO₄@GO-modified electrode exhibited a low charge transfer resistance of 20 Ω. Using differential pulse voltammetry (DPV), the electrode demonstrated a limit of detection (LOD) of 6.4 nM for MTO, with a high sensitivity of 10.84 µA µM⁻¹cm⁻² and excellent anti-inference property towards MTO tested along with interfering substances. The sensor was successfully applied to real environmental water samples and human urine samples, showing excellent recovery rates of MTO. This work underscores the potential of La₂NiO₄@GO-modified electrodes in monitoring and mitigating the environmental impact of MTO, contributing to a healthy environment. [Display omitted]</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>39721500</pmid><doi>10.1016/j.watres.2024.122998</doi></addata></record>
fulltext fulltext
identifier ISSN: 0043-1354
ispartof Water research (Oxford), 2025-04, Vol.273, p.122998, Article 122998
issn 0043-1354
1879-2448
1879-2448
language eng
recordid cdi_proquest_miscellaneous_3149538006
source ScienceDirect Freedom Collection
subjects Calcium Compounds - chemistry
Electrochemical sensing
Electrochemical Techniques
Electrodes
Environmental Monitoring - methods
Graphite - chemistry
La2NiO4@GO nanocomposite
Lanthanum - chemistry
Limit of Detection
Nanocomposites - chemistry
Organic pollutant
Oxides - chemistry
P-methylamino phenol sulfate
Photoelectron Spectroscopy
Spectroscopy, Fourier Transform Infrared
Titanium - chemistry
Voltammetry
Water Pollutants, Chemical - analysis
title Development of an ultrasensitive sensor for detecting metol in environmental water samples using ruddlesden-popper type layered perovskite (La2NiO4) combined with graphene oxide
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-23T02%3A33%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20an%20ultrasensitive%20sensor%20for%20detecting%20metol%20in%20environmental%20water%20samples%20using%20ruddlesden-popper%20type%20layered%20perovskite%20(La2NiO4)%20combined%20with%20graphene%20oxide&rft.jtitle=Water%20research%20(Oxford)&rft.au=Manimaran,%20Parthasarathi&rft.date=2025-04-01&rft.volume=273&rft.spage=122998&rft.pages=122998-&rft.artnum=122998&rft.issn=0043-1354&rft.eissn=1879-2448&rft_id=info:doi/10.1016/j.watres.2024.122998&rft_dat=%3Cproquest_cross%3E3149538006%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c241t-52ddfb7df2dc4bf3c43fd9d55d563637ca4b46465dff9576edff0a13bb6385c73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3149538006&rft_id=info:pmid/39721500&rfr_iscdi=true