Loading…

Dual Inhibitors of SARS-CoV-2 3CL Protease and Human Cathepsin L Containing Glutamine Isosteres Are Anti-CoV-2 Agents

SARS-CoV-2 3CL protease (Main protease) and human cathepsin L are proteases that play unique roles in the infection of human cells by SARS-CoV-2, the causative agent of COVID-19. Both proteases recognize leucine and other hydrophobic amino acids at the P position of a peptidomimetic inhibitor. At th...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the American Chemical Society 2025-01
Main Authors: Kumar, Vivek, Zhu, Jiyun, Chenna, Bala C, Hoffpauir, Zoe A, Rademacher, Andrew, Rogers, Ashley M, Tseng, Chien-Te, Drelich, Aleksandra, Farzandh, Sharfa, Lamb, Audrey L, Meek, Thomas D
Format: Article
Language:English
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:SARS-CoV-2 3CL protease (Main protease) and human cathepsin L are proteases that play unique roles in the infection of human cells by SARS-CoV-2, the causative agent of COVID-19. Both proteases recognize leucine and other hydrophobic amino acids at the P position of a peptidomimetic inhibitor. At the P position, cathepsin L accepts many amino acid side chains, with a partial preference for phenylalanine, while 3CL-PR protease has a stringent specificity for glutamine or glutamine analogues. We have designed, synthesized, and evaluated peptidomimetic aldehyde dual-target (dual-acting) inhibitors using two peptide scaffolds based on those of two Pfizer 3CL-PR inhibitors, , and . Our inhibitors contain glutamine isosteres at the P position, including 2-pyridon-3-yl-alanine, 3-pyridinyl-alanine, and 1,3-oxazo-4-yl-alanine groups. Inhibition constants for these new inhibitors ranged from = 0.6-18 nM (cathepsin L) and = 2.6-124 nM (3CL-PR), for which inhibitors with the 2-pyridon-3-yl-alanal substituent were the most potent for 3CL-PR. The anti-CoV-2 activity of these inhibitors ranged from EC = 0.47-15 μM. X-ray structures of the peptidomimetic aldehyde inhibitors of 3CL-PR with similar scaffolds all demonstrated the formation of thiohemiacetals with Cys , and hydrogen-bonding interactions with the heteroatoms of the pyridon-3-yl-alanyl group, as well as the nitrogen of the N-terminal indole and its appended carbonyl group at the P position. The absence of these hydrogen bonds for the inhibitors containing the 3-pyridinyl-alanyl and 1,3-oxazo-4-yl-alanyl groups was reflected in the less potent inhibition of the inhibitors with 3CL-PR. In summary, our studies demonstrate the value of a second generation of cysteine protease inhibitors that comprise a single agent that acts on both human cathepsin L and SARS-CoV-2 3CL protease. Such dual-target inhibitors will provide anti-COVID-19 drugs that remain active despite the development of resistance due to mutation of the viral protease. Such dual-target inhibitors are more likely to remain useful therapeutics despite the emergence of inactivating mutations in the viral protease because the human cathepsin L will not develop resistance. This particular dual-target approach is innovative since one of the targets is viral (3CL-PR) required for viral protein maturation and the other is human (hCatL) which enables viral infection.
ISSN:0002-7863
1520-5126
1520-5126
DOI:10.1021/jacs.4c11620