Loading…
Imaging interlayer exciton superfluidity in a 2D semiconductor heterostructure
Excitons, which are Coulomb bound electron-hole pairs, are composite bosons and thus at low temperature can form a superfluid state with a single well-defined amplitude and phase. We directly image this macroscopic exciton superfluid state in an hBN-separated MoSe -WSe heterostructure. At high densi...
Saved in:
Published in: | Science advances 2025-01, Vol.11 (1), p.eadr1772 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c180t-16c0fe490bb70194d2e686b14c0aefa775387949e91e33e0279870ee4802b1543 |
container_end_page | |
container_issue | 1 |
container_start_page | eadr1772 |
container_title | Science advances |
container_volume | 11 |
creator | Cutshall, Jacob Mahdikhany, Fateme Roche, Anna Shanks, Daniel N Koehler, Michael R Mandrus, David G Taniguchi, Takashi Watanabe, Kenji Zhu, Qizhong LeRoy, Brian J Schaibley, John R |
description | Excitons, which are Coulomb bound electron-hole pairs, are composite bosons and thus at low temperature can form a superfluid state with a single well-defined amplitude and phase. We directly image this macroscopic exciton superfluid state in an hBN-separated MoSe
-WSe
heterostructure. At high density, we identify quasi-long-range order over the entire active area of our sample, through spatially resolved coherence measurements. By varying the exciton density and sample temperature, we map out the phase diagram of the superfluid. We observe the superfluid phase persisting to a temperature of 15 K, which is in excellent agreement with theoretical predictions. This works paves the way to realizing on chip superfluid structures capable of studying fundamental physical behaviors and quantum devices that use superfluidity. |
doi_str_mv | 10.1126/sciadv.adr1772 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3151452880</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3151452880</sourcerecordid><originalsourceid>FETCH-LOGICAL-c180t-16c0fe490bb70194d2e686b14c0aefa775387949e91e33e0279870ee4802b1543</originalsourceid><addsrcrecordid>eNpNkD1PwzAQhi0EolXpyogysqT4_BHbIyoUKlWwwBw5zqUY5aPYCaL_nqAWxHR30vO-Oj2EXAJdALDsJjpvy8-FLQMoxU7IlHElUyaFPv23T8g8xndKKYgsk2DOyYQbJZkwdEqe1o3d-nab-LbHUNs9hgS_nO-7NonDDkNVD770_X4EEpuwuyRi413XloPru5C84RjrYh_Gcwh4Qc4qW0ecH-eMvK7uX5aP6eb5Yb283aQONO1TyBytcHygKBQFI0qGmc4KEI5arKxSkmtlhEEDyDlSpoxWFFFoygqQgs_I9aF3F7qPAWOfNz46rGvbYjfEnIMEIZnWdEQXB9SNf8aAVb4LvrFhnwPNfzTmB435UeMYuDp2D0WD5R_-K41_Aya-b_w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3151452880</pqid></control><display><type>article</type><title>Imaging interlayer exciton superfluidity in a 2D semiconductor heterostructure</title><source>PubMed Central (Open Access)</source><source>American Association for the Advancement of Science</source><creator>Cutshall, Jacob ; Mahdikhany, Fateme ; Roche, Anna ; Shanks, Daniel N ; Koehler, Michael R ; Mandrus, David G ; Taniguchi, Takashi ; Watanabe, Kenji ; Zhu, Qizhong ; LeRoy, Brian J ; Schaibley, John R</creator><creatorcontrib>Cutshall, Jacob ; Mahdikhany, Fateme ; Roche, Anna ; Shanks, Daniel N ; Koehler, Michael R ; Mandrus, David G ; Taniguchi, Takashi ; Watanabe, Kenji ; Zhu, Qizhong ; LeRoy, Brian J ; Schaibley, John R</creatorcontrib><description>Excitons, which are Coulomb bound electron-hole pairs, are composite bosons and thus at low temperature can form a superfluid state with a single well-defined amplitude and phase. We directly image this macroscopic exciton superfluid state in an hBN-separated MoSe
-WSe
heterostructure. At high density, we identify quasi-long-range order over the entire active area of our sample, through spatially resolved coherence measurements. By varying the exciton density and sample temperature, we map out the phase diagram of the superfluid. We observe the superfluid phase persisting to a temperature of 15 K, which is in excellent agreement with theoretical predictions. This works paves the way to realizing on chip superfluid structures capable of studying fundamental physical behaviors and quantum devices that use superfluidity.</description><identifier>ISSN: 2375-2548</identifier><identifier>EISSN: 2375-2548</identifier><identifier>DOI: 10.1126/sciadv.adr1772</identifier><identifier>PMID: 39752490</identifier><language>eng</language><publisher>United States</publisher><ispartof>Science advances, 2025-01, Vol.11 (1), p.eadr1772</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c180t-16c0fe490bb70194d2e686b14c0aefa775387949e91e33e0279870ee4802b1543</cites><orcidid>0000-0002-1467-3105 ; 0000-0002-8753-8203 ; 0000-0002-5163-7293 ; 0000-0002-8024-9193 ; 0000-0003-3616-7104 ; 0000-0003-1610-5424 ; 0000-0001-6936-8928 ; 0000-0002-8481-4233 ; 0000-0002-6329-0338 ; 0000-0003-3701-8119 ; 0000-0002-9798-9075</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2871,2872,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39752490$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cutshall, Jacob</creatorcontrib><creatorcontrib>Mahdikhany, Fateme</creatorcontrib><creatorcontrib>Roche, Anna</creatorcontrib><creatorcontrib>Shanks, Daniel N</creatorcontrib><creatorcontrib>Koehler, Michael R</creatorcontrib><creatorcontrib>Mandrus, David G</creatorcontrib><creatorcontrib>Taniguchi, Takashi</creatorcontrib><creatorcontrib>Watanabe, Kenji</creatorcontrib><creatorcontrib>Zhu, Qizhong</creatorcontrib><creatorcontrib>LeRoy, Brian J</creatorcontrib><creatorcontrib>Schaibley, John R</creatorcontrib><title>Imaging interlayer exciton superfluidity in a 2D semiconductor heterostructure</title><title>Science advances</title><addtitle>Sci Adv</addtitle><description>Excitons, which are Coulomb bound electron-hole pairs, are composite bosons and thus at low temperature can form a superfluid state with a single well-defined amplitude and phase. We directly image this macroscopic exciton superfluid state in an hBN-separated MoSe
-WSe
heterostructure. At high density, we identify quasi-long-range order over the entire active area of our sample, through spatially resolved coherence measurements. By varying the exciton density and sample temperature, we map out the phase diagram of the superfluid. We observe the superfluid phase persisting to a temperature of 15 K, which is in excellent agreement with theoretical predictions. This works paves the way to realizing on chip superfluid structures capable of studying fundamental physical behaviors and quantum devices that use superfluidity.</description><issn>2375-2548</issn><issn>2375-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNpNkD1PwzAQhi0EolXpyogysqT4_BHbIyoUKlWwwBw5zqUY5aPYCaL_nqAWxHR30vO-Oj2EXAJdALDsJjpvy8-FLQMoxU7IlHElUyaFPv23T8g8xndKKYgsk2DOyYQbJZkwdEqe1o3d-nab-LbHUNs9hgS_nO-7NonDDkNVD770_X4EEpuwuyRi413XloPru5C84RjrYh_Gcwh4Qc4qW0ecH-eMvK7uX5aP6eb5Yb283aQONO1TyBytcHygKBQFI0qGmc4KEI5arKxSkmtlhEEDyDlSpoxWFFFoygqQgs_I9aF3F7qPAWOfNz46rGvbYjfEnIMEIZnWdEQXB9SNf8aAVb4LvrFhnwPNfzTmB435UeMYuDp2D0WD5R_-K41_Aya-b_w</recordid><startdate>20250103</startdate><enddate>20250103</enddate><creator>Cutshall, Jacob</creator><creator>Mahdikhany, Fateme</creator><creator>Roche, Anna</creator><creator>Shanks, Daniel N</creator><creator>Koehler, Michael R</creator><creator>Mandrus, David G</creator><creator>Taniguchi, Takashi</creator><creator>Watanabe, Kenji</creator><creator>Zhu, Qizhong</creator><creator>LeRoy, Brian J</creator><creator>Schaibley, John R</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1467-3105</orcidid><orcidid>https://orcid.org/0000-0002-8753-8203</orcidid><orcidid>https://orcid.org/0000-0002-5163-7293</orcidid><orcidid>https://orcid.org/0000-0002-8024-9193</orcidid><orcidid>https://orcid.org/0000-0003-3616-7104</orcidid><orcidid>https://orcid.org/0000-0003-1610-5424</orcidid><orcidid>https://orcid.org/0000-0001-6936-8928</orcidid><orcidid>https://orcid.org/0000-0002-8481-4233</orcidid><orcidid>https://orcid.org/0000-0002-6329-0338</orcidid><orcidid>https://orcid.org/0000-0003-3701-8119</orcidid><orcidid>https://orcid.org/0000-0002-9798-9075</orcidid></search><sort><creationdate>20250103</creationdate><title>Imaging interlayer exciton superfluidity in a 2D semiconductor heterostructure</title><author>Cutshall, Jacob ; Mahdikhany, Fateme ; Roche, Anna ; Shanks, Daniel N ; Koehler, Michael R ; Mandrus, David G ; Taniguchi, Takashi ; Watanabe, Kenji ; Zhu, Qizhong ; LeRoy, Brian J ; Schaibley, John R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c180t-16c0fe490bb70194d2e686b14c0aefa775387949e91e33e0279870ee4802b1543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cutshall, Jacob</creatorcontrib><creatorcontrib>Mahdikhany, Fateme</creatorcontrib><creatorcontrib>Roche, Anna</creatorcontrib><creatorcontrib>Shanks, Daniel N</creatorcontrib><creatorcontrib>Koehler, Michael R</creatorcontrib><creatorcontrib>Mandrus, David G</creatorcontrib><creatorcontrib>Taniguchi, Takashi</creatorcontrib><creatorcontrib>Watanabe, Kenji</creatorcontrib><creatorcontrib>Zhu, Qizhong</creatorcontrib><creatorcontrib>LeRoy, Brian J</creatorcontrib><creatorcontrib>Schaibley, John R</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Science advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cutshall, Jacob</au><au>Mahdikhany, Fateme</au><au>Roche, Anna</au><au>Shanks, Daniel N</au><au>Koehler, Michael R</au><au>Mandrus, David G</au><au>Taniguchi, Takashi</au><au>Watanabe, Kenji</au><au>Zhu, Qizhong</au><au>LeRoy, Brian J</au><au>Schaibley, John R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Imaging interlayer exciton superfluidity in a 2D semiconductor heterostructure</atitle><jtitle>Science advances</jtitle><addtitle>Sci Adv</addtitle><date>2025-01-03</date><risdate>2025</risdate><volume>11</volume><issue>1</issue><spage>eadr1772</spage><pages>eadr1772-</pages><issn>2375-2548</issn><eissn>2375-2548</eissn><abstract>Excitons, which are Coulomb bound electron-hole pairs, are composite bosons and thus at low temperature can form a superfluid state with a single well-defined amplitude and phase. We directly image this macroscopic exciton superfluid state in an hBN-separated MoSe
-WSe
heterostructure. At high density, we identify quasi-long-range order over the entire active area of our sample, through spatially resolved coherence measurements. By varying the exciton density and sample temperature, we map out the phase diagram of the superfluid. We observe the superfluid phase persisting to a temperature of 15 K, which is in excellent agreement with theoretical predictions. This works paves the way to realizing on chip superfluid structures capable of studying fundamental physical behaviors and quantum devices that use superfluidity.</abstract><cop>United States</cop><pmid>39752490</pmid><doi>10.1126/sciadv.adr1772</doi><orcidid>https://orcid.org/0000-0002-1467-3105</orcidid><orcidid>https://orcid.org/0000-0002-8753-8203</orcidid><orcidid>https://orcid.org/0000-0002-5163-7293</orcidid><orcidid>https://orcid.org/0000-0002-8024-9193</orcidid><orcidid>https://orcid.org/0000-0003-3616-7104</orcidid><orcidid>https://orcid.org/0000-0003-1610-5424</orcidid><orcidid>https://orcid.org/0000-0001-6936-8928</orcidid><orcidid>https://orcid.org/0000-0002-8481-4233</orcidid><orcidid>https://orcid.org/0000-0002-6329-0338</orcidid><orcidid>https://orcid.org/0000-0003-3701-8119</orcidid><orcidid>https://orcid.org/0000-0002-9798-9075</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2375-2548 |
ispartof | Science advances, 2025-01, Vol.11 (1), p.eadr1772 |
issn | 2375-2548 2375-2548 |
language | eng |
recordid | cdi_proquest_miscellaneous_3151452880 |
source | PubMed Central (Open Access); American Association for the Advancement of Science |
title | Imaging interlayer exciton superfluidity in a 2D semiconductor heterostructure |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T10%3A13%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Imaging%20interlayer%20exciton%20superfluidity%20in%20a%202D%20semiconductor%20heterostructure&rft.jtitle=Science%20advances&rft.au=Cutshall,%20Jacob&rft.date=2025-01-03&rft.volume=11&rft.issue=1&rft.spage=eadr1772&rft.pages=eadr1772-&rft.issn=2375-2548&rft.eissn=2375-2548&rft_id=info:doi/10.1126/sciadv.adr1772&rft_dat=%3Cproquest_cross%3E3151452880%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c180t-16c0fe490bb70194d2e686b14c0aefa775387949e91e33e0279870ee4802b1543%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3151452880&rft_id=info:pmid/39752490&rfr_iscdi=true |