Loading…

Imaging interlayer exciton superfluidity in a 2D semiconductor heterostructure

Excitons, which are Coulomb bound electron-hole pairs, are composite bosons and thus at low temperature can form a superfluid state with a single well-defined amplitude and phase. We directly image this macroscopic exciton superfluid state in an hBN-separated MoSe -WSe heterostructure. At high densi...

Full description

Saved in:
Bibliographic Details
Published in:Science advances 2025-01, Vol.11 (1), p.eadr1772
Main Authors: Cutshall, Jacob, Mahdikhany, Fateme, Roche, Anna, Shanks, Daniel N, Koehler, Michael R, Mandrus, David G, Taniguchi, Takashi, Watanabe, Kenji, Zhu, Qizhong, LeRoy, Brian J, Schaibley, John R
Format: Article
Language:English
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c180t-16c0fe490bb70194d2e686b14c0aefa775387949e91e33e0279870ee4802b1543
container_end_page
container_issue 1
container_start_page eadr1772
container_title Science advances
container_volume 11
creator Cutshall, Jacob
Mahdikhany, Fateme
Roche, Anna
Shanks, Daniel N
Koehler, Michael R
Mandrus, David G
Taniguchi, Takashi
Watanabe, Kenji
Zhu, Qizhong
LeRoy, Brian J
Schaibley, John R
description Excitons, which are Coulomb bound electron-hole pairs, are composite bosons and thus at low temperature can form a superfluid state with a single well-defined amplitude and phase. We directly image this macroscopic exciton superfluid state in an hBN-separated MoSe -WSe heterostructure. At high density, we identify quasi-long-range order over the entire active area of our sample, through spatially resolved coherence measurements. By varying the exciton density and sample temperature, we map out the phase diagram of the superfluid. We observe the superfluid phase persisting to a temperature of 15 K, which is in excellent agreement with theoretical predictions. This works paves the way to realizing on chip superfluid structures capable of studying fundamental physical behaviors and quantum devices that use superfluidity.
doi_str_mv 10.1126/sciadv.adr1772
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3151452880</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3151452880</sourcerecordid><originalsourceid>FETCH-LOGICAL-c180t-16c0fe490bb70194d2e686b14c0aefa775387949e91e33e0279870ee4802b1543</originalsourceid><addsrcrecordid>eNpNkD1PwzAQhi0EolXpyogysqT4_BHbIyoUKlWwwBw5zqUY5aPYCaL_nqAWxHR30vO-Oj2EXAJdALDsJjpvy8-FLQMoxU7IlHElUyaFPv23T8g8xndKKYgsk2DOyYQbJZkwdEqe1o3d-nab-LbHUNs9hgS_nO-7NonDDkNVD770_X4EEpuwuyRi413XloPru5C84RjrYh_Gcwh4Qc4qW0ecH-eMvK7uX5aP6eb5Yb283aQONO1TyBytcHygKBQFI0qGmc4KEI5arKxSkmtlhEEDyDlSpoxWFFFoygqQgs_I9aF3F7qPAWOfNz46rGvbYjfEnIMEIZnWdEQXB9SNf8aAVb4LvrFhnwPNfzTmB435UeMYuDp2D0WD5R_-K41_Aya-b_w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3151452880</pqid></control><display><type>article</type><title>Imaging interlayer exciton superfluidity in a 2D semiconductor heterostructure</title><source>PubMed Central (Open Access)</source><source>American Association for the Advancement of Science</source><creator>Cutshall, Jacob ; Mahdikhany, Fateme ; Roche, Anna ; Shanks, Daniel N ; Koehler, Michael R ; Mandrus, David G ; Taniguchi, Takashi ; Watanabe, Kenji ; Zhu, Qizhong ; LeRoy, Brian J ; Schaibley, John R</creator><creatorcontrib>Cutshall, Jacob ; Mahdikhany, Fateme ; Roche, Anna ; Shanks, Daniel N ; Koehler, Michael R ; Mandrus, David G ; Taniguchi, Takashi ; Watanabe, Kenji ; Zhu, Qizhong ; LeRoy, Brian J ; Schaibley, John R</creatorcontrib><description>Excitons, which are Coulomb bound electron-hole pairs, are composite bosons and thus at low temperature can form a superfluid state with a single well-defined amplitude and phase. We directly image this macroscopic exciton superfluid state in an hBN-separated MoSe -WSe heterostructure. At high density, we identify quasi-long-range order over the entire active area of our sample, through spatially resolved coherence measurements. By varying the exciton density and sample temperature, we map out the phase diagram of the superfluid. We observe the superfluid phase persisting to a temperature of 15 K, which is in excellent agreement with theoretical predictions. This works paves the way to realizing on chip superfluid structures capable of studying fundamental physical behaviors and quantum devices that use superfluidity.</description><identifier>ISSN: 2375-2548</identifier><identifier>EISSN: 2375-2548</identifier><identifier>DOI: 10.1126/sciadv.adr1772</identifier><identifier>PMID: 39752490</identifier><language>eng</language><publisher>United States</publisher><ispartof>Science advances, 2025-01, Vol.11 (1), p.eadr1772</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c180t-16c0fe490bb70194d2e686b14c0aefa775387949e91e33e0279870ee4802b1543</cites><orcidid>0000-0002-1467-3105 ; 0000-0002-8753-8203 ; 0000-0002-5163-7293 ; 0000-0002-8024-9193 ; 0000-0003-3616-7104 ; 0000-0003-1610-5424 ; 0000-0001-6936-8928 ; 0000-0002-8481-4233 ; 0000-0002-6329-0338 ; 0000-0003-3701-8119 ; 0000-0002-9798-9075</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2871,2872,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39752490$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cutshall, Jacob</creatorcontrib><creatorcontrib>Mahdikhany, Fateme</creatorcontrib><creatorcontrib>Roche, Anna</creatorcontrib><creatorcontrib>Shanks, Daniel N</creatorcontrib><creatorcontrib>Koehler, Michael R</creatorcontrib><creatorcontrib>Mandrus, David G</creatorcontrib><creatorcontrib>Taniguchi, Takashi</creatorcontrib><creatorcontrib>Watanabe, Kenji</creatorcontrib><creatorcontrib>Zhu, Qizhong</creatorcontrib><creatorcontrib>LeRoy, Brian J</creatorcontrib><creatorcontrib>Schaibley, John R</creatorcontrib><title>Imaging interlayer exciton superfluidity in a 2D semiconductor heterostructure</title><title>Science advances</title><addtitle>Sci Adv</addtitle><description>Excitons, which are Coulomb bound electron-hole pairs, are composite bosons and thus at low temperature can form a superfluid state with a single well-defined amplitude and phase. We directly image this macroscopic exciton superfluid state in an hBN-separated MoSe -WSe heterostructure. At high density, we identify quasi-long-range order over the entire active area of our sample, through spatially resolved coherence measurements. By varying the exciton density and sample temperature, we map out the phase diagram of the superfluid. We observe the superfluid phase persisting to a temperature of 15 K, which is in excellent agreement with theoretical predictions. This works paves the way to realizing on chip superfluid structures capable of studying fundamental physical behaviors and quantum devices that use superfluidity.</description><issn>2375-2548</issn><issn>2375-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNpNkD1PwzAQhi0EolXpyogysqT4_BHbIyoUKlWwwBw5zqUY5aPYCaL_nqAWxHR30vO-Oj2EXAJdALDsJjpvy8-FLQMoxU7IlHElUyaFPv23T8g8xndKKYgsk2DOyYQbJZkwdEqe1o3d-nab-LbHUNs9hgS_nO-7NonDDkNVD770_X4EEpuwuyRi413XloPru5C84RjrYh_Gcwh4Qc4qW0ecH-eMvK7uX5aP6eb5Yb283aQONO1TyBytcHygKBQFI0qGmc4KEI5arKxSkmtlhEEDyDlSpoxWFFFoygqQgs_I9aF3F7qPAWOfNz46rGvbYjfEnIMEIZnWdEQXB9SNf8aAVb4LvrFhnwPNfzTmB435UeMYuDp2D0WD5R_-K41_Aya-b_w</recordid><startdate>20250103</startdate><enddate>20250103</enddate><creator>Cutshall, Jacob</creator><creator>Mahdikhany, Fateme</creator><creator>Roche, Anna</creator><creator>Shanks, Daniel N</creator><creator>Koehler, Michael R</creator><creator>Mandrus, David G</creator><creator>Taniguchi, Takashi</creator><creator>Watanabe, Kenji</creator><creator>Zhu, Qizhong</creator><creator>LeRoy, Brian J</creator><creator>Schaibley, John R</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1467-3105</orcidid><orcidid>https://orcid.org/0000-0002-8753-8203</orcidid><orcidid>https://orcid.org/0000-0002-5163-7293</orcidid><orcidid>https://orcid.org/0000-0002-8024-9193</orcidid><orcidid>https://orcid.org/0000-0003-3616-7104</orcidid><orcidid>https://orcid.org/0000-0003-1610-5424</orcidid><orcidid>https://orcid.org/0000-0001-6936-8928</orcidid><orcidid>https://orcid.org/0000-0002-8481-4233</orcidid><orcidid>https://orcid.org/0000-0002-6329-0338</orcidid><orcidid>https://orcid.org/0000-0003-3701-8119</orcidid><orcidid>https://orcid.org/0000-0002-9798-9075</orcidid></search><sort><creationdate>20250103</creationdate><title>Imaging interlayer exciton superfluidity in a 2D semiconductor heterostructure</title><author>Cutshall, Jacob ; Mahdikhany, Fateme ; Roche, Anna ; Shanks, Daniel N ; Koehler, Michael R ; Mandrus, David G ; Taniguchi, Takashi ; Watanabe, Kenji ; Zhu, Qizhong ; LeRoy, Brian J ; Schaibley, John R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c180t-16c0fe490bb70194d2e686b14c0aefa775387949e91e33e0279870ee4802b1543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cutshall, Jacob</creatorcontrib><creatorcontrib>Mahdikhany, Fateme</creatorcontrib><creatorcontrib>Roche, Anna</creatorcontrib><creatorcontrib>Shanks, Daniel N</creatorcontrib><creatorcontrib>Koehler, Michael R</creatorcontrib><creatorcontrib>Mandrus, David G</creatorcontrib><creatorcontrib>Taniguchi, Takashi</creatorcontrib><creatorcontrib>Watanabe, Kenji</creatorcontrib><creatorcontrib>Zhu, Qizhong</creatorcontrib><creatorcontrib>LeRoy, Brian J</creatorcontrib><creatorcontrib>Schaibley, John R</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Science advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cutshall, Jacob</au><au>Mahdikhany, Fateme</au><au>Roche, Anna</au><au>Shanks, Daniel N</au><au>Koehler, Michael R</au><au>Mandrus, David G</au><au>Taniguchi, Takashi</au><au>Watanabe, Kenji</au><au>Zhu, Qizhong</au><au>LeRoy, Brian J</au><au>Schaibley, John R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Imaging interlayer exciton superfluidity in a 2D semiconductor heterostructure</atitle><jtitle>Science advances</jtitle><addtitle>Sci Adv</addtitle><date>2025-01-03</date><risdate>2025</risdate><volume>11</volume><issue>1</issue><spage>eadr1772</spage><pages>eadr1772-</pages><issn>2375-2548</issn><eissn>2375-2548</eissn><abstract>Excitons, which are Coulomb bound electron-hole pairs, are composite bosons and thus at low temperature can form a superfluid state with a single well-defined amplitude and phase. We directly image this macroscopic exciton superfluid state in an hBN-separated MoSe -WSe heterostructure. At high density, we identify quasi-long-range order over the entire active area of our sample, through spatially resolved coherence measurements. By varying the exciton density and sample temperature, we map out the phase diagram of the superfluid. We observe the superfluid phase persisting to a temperature of 15 K, which is in excellent agreement with theoretical predictions. This works paves the way to realizing on chip superfluid structures capable of studying fundamental physical behaviors and quantum devices that use superfluidity.</abstract><cop>United States</cop><pmid>39752490</pmid><doi>10.1126/sciadv.adr1772</doi><orcidid>https://orcid.org/0000-0002-1467-3105</orcidid><orcidid>https://orcid.org/0000-0002-8753-8203</orcidid><orcidid>https://orcid.org/0000-0002-5163-7293</orcidid><orcidid>https://orcid.org/0000-0002-8024-9193</orcidid><orcidid>https://orcid.org/0000-0003-3616-7104</orcidid><orcidid>https://orcid.org/0000-0003-1610-5424</orcidid><orcidid>https://orcid.org/0000-0001-6936-8928</orcidid><orcidid>https://orcid.org/0000-0002-8481-4233</orcidid><orcidid>https://orcid.org/0000-0002-6329-0338</orcidid><orcidid>https://orcid.org/0000-0003-3701-8119</orcidid><orcidid>https://orcid.org/0000-0002-9798-9075</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2375-2548
ispartof Science advances, 2025-01, Vol.11 (1), p.eadr1772
issn 2375-2548
2375-2548
language eng
recordid cdi_proquest_miscellaneous_3151452880
source PubMed Central (Open Access); American Association for the Advancement of Science
title Imaging interlayer exciton superfluidity in a 2D semiconductor heterostructure
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T10%3A13%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Imaging%20interlayer%20exciton%20superfluidity%20in%20a%202D%20semiconductor%20heterostructure&rft.jtitle=Science%20advances&rft.au=Cutshall,%20Jacob&rft.date=2025-01-03&rft.volume=11&rft.issue=1&rft.spage=eadr1772&rft.pages=eadr1772-&rft.issn=2375-2548&rft.eissn=2375-2548&rft_id=info:doi/10.1126/sciadv.adr1772&rft_dat=%3Cproquest_cross%3E3151452880%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c180t-16c0fe490bb70194d2e686b14c0aefa775387949e91e33e0279870ee4802b1543%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3151452880&rft_id=info:pmid/39752490&rfr_iscdi=true