Loading…

Photocatalytic Semiconductor-Metal Hybrid Nanoparticles: Single-Atom Catalyst Regime Surpasses Metal Tips

Semiconductor-metal hybrid nanoparticles (HNPs) are promising materials for photocatalytic applications, such as water splitting for green hydrogen generation. While most studies have focused on Cd containing HNPs, the realization of actual applications will require environmentally compatible system...

Full description

Saved in:
Bibliographic Details
Published in:ACS nano 2025-01
Main Authors: Gigi, Shira, Cohen, Tal, Florio, Diego, Levi, Adar, Stone, David, Katoa, Ofer, Li, Junying, Liu, Jing, Remennik, Sergei, Camargo, Franco V A, Cerullo, Giulio, Frenkel, Anatoly I, Banin, Uri
Format: Article
Language:English
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Semiconductor-metal hybrid nanoparticles (HNPs) are promising materials for photocatalytic applications, such as water splitting for green hydrogen generation. While most studies have focused on Cd containing HNPs, the realization of actual applications will require environmentally compatible systems. Using heavy-metal free ZnSe-Au HNPs as a model, we investigate the dependence of their functionality and efficiency on the cocatalyst metal domain characteristics ranging from the single-atom catalyst (SAC) regime to metal-tipped systems. The SAC regime was achieved via the deposition of individual atomic cocatalysts on the semiconductor nanocrystals in solution. Utilizing a combination of electron microscopy, X-ray absorption spectroscopy, and X-ray photoelectron spectroscopy, we established the presence of single Au atoms on the ZnSe nanorod surface. Upon increased Au concentration, this transitions to metal tip growth. Photocatalytic hydrogen generation measurements reveal a strong dependence on the cocatalyst loading with a sharp response maximum in the SAC regime. Ultrafast dynamics studies show similar electron decay kinetics for the pristine ZnSe nanorods and the ZnSe-Au HNPs in either SAC or tipped systems. This indicates that electron transfer is not the rate-limiting step for the photocatalytic process. Combined with the structural-chemical characterization, we conclude that the enhanced photocatalytic activity is due to the higher reactivity of the single-atom sites. This holistic view establishes the significance of SAC-HNPs, setting the stage for designing efficient and sustainable heavy-metal-free photocatalyst nanoparticles for numerous applications.
ISSN:1936-0851
1936-086X
1936-086X
DOI:10.1021/acsnano.4c13603